論文の概要: Understanding the training of infinitely deep and wide ResNets with Conditional Optimal Transport
- arxiv url: http://arxiv.org/abs/2403.12887v1
- Date: Tue, 19 Mar 2024 16:34:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 13:24:34.140186
- Title: Understanding the training of infinitely deep and wide ResNets with Conditional Optimal Transport
- Title(参考訳): 条件付き最適輸送による無限深度及び広帯域ResNetの学習の理解
- Authors: Raphaël Barboni, Gabriel Peyré, François-Xavier Vialard,
- Abstract要約: 深部ニューラルネットワークの勾配流は遠距離で任意に収束することを示す。
これは空間における有限幅の勾配距離の理論に依存する。
- 参考スコア(独自算出の注目度): 26.47265060394168
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the convergence of gradient flow for the training of deep neural networks. If Residual Neural Networks are a popular example of very deep architectures, their training constitutes a challenging optimization problem due notably to the non-convexity and the non-coercivity of the objective. Yet, in applications, those tasks are successfully solved by simple optimization algorithms such as gradient descent. To better understand this phenomenon, we focus here on a ``mean-field'' model of infinitely deep and arbitrarily wide ResNet, parameterized by probability measures over the product set of layers and parameters and with constant marginal on the set of layers. Indeed, in the case of shallow neural networks, mean field models have proven to benefit from simplified loss-landscapes and good theoretical guarantees when trained with gradient flow for the Wasserstein metric on the set of probability measures. Motivated by this approach, we propose to train our model with gradient flow w.r.t. the conditional Optimal Transport distance: a restriction of the classical Wasserstein distance which enforces our marginal condition. Relying on the theory of gradient flows in metric spaces we first show the well-posedness of the gradient flow equation and its consistency with the training of ResNets at finite width. Performing a local Polyak-\L{}ojasiewicz analysis, we then show convergence of the gradient flow for well-chosen initializations: if the number of features is finite but sufficiently large and the risk is sufficiently small at initialization, the gradient flow converges towards a global minimizer. This is the first result of this type for infinitely deep and arbitrarily wide ResNets.
- Abstract(参考訳): 深層ニューラルネットワークのトレーニングにおける勾配流の収束性について検討する。
もしResidual Neural Networksが、非常に深いアーキテクチャの一般的な例であるなら、そのトレーニングは、特に非凸性と目的の非協調性のために、困難な最適化問題を構成する。
しかし、アプリケーションでは、勾配降下のような単純な最適化アルゴリズムによってこれらのタスクはうまく解決される。
この現象をよりよく理解するために、我々は、無限に深く、任意に広がるResNetの'mean-field''モデルに焦点をあてる。
実際、浅いニューラルネットワークの場合、平均場モデルは、一連の確率測度に基づいてワッサーシュタイン計量の勾配流で訓練された場合、簡易な損失ランドスケープと優れた理論的保証の恩恵を受けることが証明されている。
提案手法は,条件付き最適輸送距離の勾配流w.r.t.を用いて,古典的なワッサーシュタイン距離の制約を課す。
距離空間における勾配流の理論に基づいて、勾配流方程式の正当性とその有限幅でのResNetsのトレーニングとの整合性を示す。
局所的なPolyak-\L{}ojasiewicz解析を実行すると、その勾配流の収束性を示す: 特徴の数が有限であるが十分大きく、初期化時にリスクが十分に小さい場合、勾配流は大域的な最小化に向けて収束する。
これは、無限に深く、任意に広いResNetに対して、このタイプの最初の結果である。
関連論文リスト
- A Mean-Field Analysis of Neural Stochastic Gradient Descent-Ascent for Functional Minimax Optimization [90.87444114491116]
本稿では,超パラメトリック化された2層ニューラルネットワークの無限次元関数クラス上で定義される最小最適化問題について検討する。
i) 勾配降下指数アルゴリズムの収束と, (ii) ニューラルネットワークの表現学習に対処する。
その結果、ニューラルネットワークによって誘導される特徴表現は、ワッサーシュタイン距離で測定された$O(alpha-1)$で初期表現から逸脱することが許された。
論文 参考訳(メタデータ) (2024-04-18T16:46:08Z) - Implicit regularization in AI meets generalized hardness of
approximation in optimization -- Sharp results for diagonal linear networks [0.0]
直交線形ネットワークの勾配流による暗黙の正規化について, 鋭い結果を示す。
これを近似の一般化硬度における相転移現象と関連付ける。
結果の非シャープ性は、基礎追従最適化問題に対して、GHA現象が起こらないことを意味する。
論文 参考訳(メタデータ) (2023-07-13T13:27:51Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Implicit Bias in Leaky ReLU Networks Trained on High-Dimensional Data [63.34506218832164]
本研究では,ReLUを活性化した2層完全連結ニューラルネットワークにおける勾配流と勾配降下の暗黙的バイアスについて検討する。
勾配流には、均一なニューラルネットワークに対する暗黙のバイアスに関する最近の研究を活用し、リーク的に勾配流が2つ以上のランクを持つニューラルネットワークを生成することを示す。
勾配降下は, ランダムな分散が十分小さい場合, 勾配降下の1ステップでネットワークのランクが劇的に低下し, トレーニング中もランクが小さくなることを示す。
論文 参考訳(メタデータ) (2022-10-13T15:09:54Z) - Path Regularization: A Convexity and Sparsity Inducing Regularization
for Parallel ReLU Networks [75.33431791218302]
本稿では,ディープニューラルネットワークのトレーニング問題について検討し,最適化環境に隠された凸性を明らかにするための解析的アプローチを提案する。
我々は、標準のディープ・ネットワークとResNetを特別なケースとして含む、ディープ・パラレルなReLUネットワークアーキテクチャについて検討する。
論文 参考訳(メタデータ) (2021-10-18T18:00:36Z) - On the Global Convergence of Gradient Descent for multi-layer ResNets in
the mean-field regime [19.45069138853531]
一階法は、グローバル化された体制におけるグローバルな最適性を見出す。
ResNetが十分に大きく、精度と信頼度に応じて深さ幅がある場合、一階法はデータに適合する最適化を見つけることができる。
論文 参考訳(メタデータ) (2021-10-06T17:16:09Z) - Proxy Convexity: A Unified Framework for the Analysis of Neural Networks
Trained by Gradient Descent [95.94432031144716]
学習ネットワークの分析のための統合された非最適化フレームワークを提案する。
既存の保証は勾配降下により統一することができることを示す。
論文 参考訳(メタデータ) (2021-06-25T17:45:00Z) - Overparameterization of deep ResNet: zero loss and mean-field analysis [19.45069138853531]
データに適合するディープニューラルネットワーク(NN)内のパラメータを見つけることは、非最適化問題である。
基礎的な一階述語最適化法(漸進降下法)は,多くの現実的状況に完全に適合した大域的解を求める。
所定の閾値未満の損失を減らすために必要な深さと幅を高い確率で推定する。
論文 参考訳(メタデータ) (2021-05-30T02:46:09Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - Directional convergence and alignment in deep learning [38.73942298289583]
交差エントロピーと関連する分類損失の最小化は無限大であるが, ネットワーク重みは勾配流により方向収束することを示した。
この証明は、ReLU、最大プール、線形および畳み込み層を許容する深い均質ネットワークに対して成り立つ。
論文 参考訳(メタデータ) (2020-06-11T17:50:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。