論文の概要: Physics-Guided Neural Networks for Intraventricular Vector Flow Mapping
- arxiv url: http://arxiv.org/abs/2403.13040v2
- Date: Thu, 27 Jun 2024 17:27:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-28 19:26:56.938890
- Title: Physics-Guided Neural Networks for Intraventricular Vector Flow Mapping
- Title(参考訳): 心室内ベクトルフローマッピングのための物理誘導型ニューラルネットワーク
- Authors: Hang Jung Ling, Salomé Bru, Julia Puig, Florian Vixège, Simon Mendez, Franck Nicoud, Pierre-Yves Courand, Olivier Bernard, Damien Garcia,
- Abstract要約: 物理インフォームドニューラルネットワーク(PINN)と物理誘導型nnU-Netに基づく教師付きアプローチを用いて,従来のiVFM最適化方式に代わる新しい手法を提案する。
どちらの手法も、元のiVFMアルゴリズムに匹敵する再構成性能を示している。
この研究は、超高速カラードプライメージングにおけるPINNの潜在的な応用と、血流に基づく心臓血管疾患のバイオマーカーを導出するための流体力学方程式の導入についても示唆している。
- 参考スコア(独自算出の注目度): 1.498019339784467
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Intraventricular vector flow mapping (iVFM) seeks to enhance and quantify color Doppler in cardiac imaging. In this study, we propose novel alternatives to the traditional iVFM optimization scheme by utilizing physics-informed neural networks (PINNs) and a physics-guided nnU-Net-based supervised approach. When evaluated on simulated color Doppler images derived from a patient-specific computational fluid dynamics model and in vivo Doppler acquisitions, both approaches demonstrate comparable reconstruction performance to the original iVFM algorithm. The efficiency of PINNs is boosted through dual-stage optimization and pre-optimized weights. On the other hand, the nnU-Net method excels in generalizability and real-time capabilities. Notably, nnU-Net shows superior robustness on sparse and truncated Doppler data while maintaining independence from explicit boundary conditions. Overall, our results highlight the effectiveness of these methods in reconstructing intraventricular vector blood flow. The study also suggests potential applications of PINNs in ultrafast color Doppler imaging and the incorporation of fluid dynamics equations to derive biomarkers for cardiovascular diseases based on blood flow.
- Abstract(参考訳): 心内ベクターフローマッピング(iVFM)は、心臓画像におけるカラードプラの増強と定量化を目的としている。
本研究では,物理インフォームドニューラルネットワーク (PINN) と物理誘導 nnU-Net を用いた教師付きアプローチを用いて,従来の iVFM 最適化手法に代わる新しい手法を提案する。
患者固有の流体力学モデルと生体内ドップラー取得モデルから得られたシミュレーションカラードップラー画像を用いて評価すると、どちらの手法も元のiVFMアルゴリズムに匹敵する再構成性能を示す。
PINNの効率は2段最適化と事前最適化により向上する。
一方、nnU-Net法は一般化性とリアルタイム性に優れる。
特に、nnU-Netは、明示的な境界条件からの独立性を維持しつつ、スパースおよびトランケートドップラーデータに優れたロバスト性を示す。
以上の結果から,心室内ベクター血流の再建におけるこれらの方法の有効性が示唆された。
この研究は、超高速カラードプライメージングにおけるPINNの潜在的な応用と、血流に基づく心臓血管疾患のバイオマーカーを導出するための流体力学方程式の導入についても示唆している。
関連論文リスト
- Physics-informed graph neural networks for flow field estimation in carotid arteries [2.0437999068326276]
循環動態量は動脈硬化などの循環器疾患にとって貴重なバイオメディカルリスク因子である。
本研究では,機械学習を利用した血行動態場推定のための代理モデルを作成する。
私たちは、基礎となる対称性と物理に関する事前情報を含むグラフニューラルネットワークをトレーニングし、トレーニングに必要なデータ量を制限する。
このことは、物理インフォームドグラフニューラルネットワークを4次元フローMRIデータを用いてトレーニングすることで、見えない頸動脈領域の血流を推定できることを示している。
論文 参考訳(メタデータ) (2024-08-13T13:09:28Z) - KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
KFD-NeRFは,Kalmanフィルタに基づく効率的かつ高品質な運動再構成フレームワークと統合された,新しい動的ニューラル放射場である。
我々のキーとなる考え方は、動的放射場を、観測と予測という2つの知識源に基づいて時間的に異なる状態が推定される動的システムとしてモデル化することである。
我々のKFD-NeRFは、同等の計算時間と最先端の視線合成性能で、徹底的な訓練を施した類似または優れた性能を示す。
論文 参考訳(メタデータ) (2024-07-18T05:48:24Z) - DopUS-Net: Quality-Aware Robotic Ultrasound Imaging based on Doppler
Signal [48.97719097435527]
DopUS-Netはドップラー画像とBモード画像を組み合わせることで、小血管のセグメンテーション精度と堅牢性を高める。
動脈再同定モジュールは、リアルタイムセグメンテーション結果を質的に評価し、拡張ドップラー画像に対するプローブポーズを自動的に最適化する。
論文 参考訳(メタデータ) (2023-05-15T18:19:29Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - A Deep Learning-based in silico Framework for Optimization on Retinal
Prosthetic Stimulation [3.870538485112487]
シリコン網膜インプラントモデルパルス2パーセプションによってシミュレーションされた知覚を最適化するニューラルネットワークベースのフレームワークを提案する。
パイプラインは、トレーニング可能なエンコーダ、トレーニング済み網膜インプラントモデル、トレーニング済み評価器から構成される。
論文 参考訳(メタデータ) (2023-02-07T16:32:05Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
本稿では,ニューラル平均場(NMF)ダイナミクスを用いた新しい学習フレームワークを提案する。
我々のフレームワークは拡散ネットワークの構造とノード感染確率の進化を同時に学習することができる。
論文 参考訳(メタデータ) (2021-06-03T00:02:05Z) - Prediction of progressive lens performance from neural network
simulations [62.997667081978825]
本研究の目的は,畳み込みニューラルネットワーク(CNN)に基づく視覚的視力(VA)予測の枠組みを提案することである。
提案する総合シミュレーションツールは主観的視覚性能の正確なモデルとして機能することが示されている。
論文 参考訳(メタデータ) (2021-03-19T14:51:02Z) - Neural Particle Image Velocimetry [4.416484585765027]
本稿では,この問題に適応した畳み込みニューラルネットワーク,すなわちボリューム対応ネットワーク(VCN)を紹介する。
ネットワークは、合成データと実フローデータの両方を含むデータセット上で、徹底的にトレーニングされ、テストされる。
解析の結果,提案手法は現場における他の最先端手法と同等の精度を保ちながら,効率の向上を図っている。
論文 参考訳(メタデータ) (2021-01-28T12:03:39Z) - Physics-informed neural networks for myocardial perfusion MRI
quantification [3.318100528966778]
本研究では, 心筋灌流MR定量化のための物理インフォームドニューラルネットワーク(PINN)を提案する。
PINNは、基礎となる物理保存法則を尊重しながら、観測された拡散MRデータに適合するように訓練することができる。
論文 参考訳(メタデータ) (2020-11-25T16:02:52Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
我々は,従来のグラフ畳み込みネットワークと,ネットワーク内部に組込み可能な流体力学シミュレータを組み合わせたハイブリッド(グラフ)ニューラルネットワークを開発した。
ニューラルネットワークのCFD予測の大幅な高速化により,新たな状況に十分対応できることが示される。
論文 参考訳(メタデータ) (2020-07-08T21:23:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。