Single-Shot Readout and Weak Measurement of a Tin-Vacancy Qubit in Diamond
- URL: http://arxiv.org/abs/2403.13110v2
- Date: Tue, 08 Oct 2024 22:06:51 GMT
- Title: Single-Shot Readout and Weak Measurement of a Tin-Vacancy Qubit in Diamond
- Authors: Eric I. Rosenthal, Souvik Biswas, Giovanni Scuri, Hope Lee, Abigail J. Stein, Hannah C. Kleidermacher, Jakob Grzesik, Alison E. Rugar, Shahriar Aghaeimeibodi, Daniel Riedel, Michael Titze, Edward S. Bielejec, Joonhee Choi, Christopher P. Anderson, Jelena Vuckovic,
- Abstract summary: The negatively charged tin-vacancy center in diamond (SnV$-$) is an emerging platform for building the next generation of long-distance quantum networks.
Here, we demonstrate measurement of a single SnV$-$ electronic spin with a single-shot readout fidelity of $87.4%$.
- Score: 2.8091212912045185
- License:
- Abstract: The negatively charged tin-vacancy center in diamond (SnV$^-$) is an emerging platform for building the next generation of long-distance quantum networks. This is due to the SnV$^-$'s favorable optical and spin properties including bright emission, insensitivity to electronic noise, and long spin coherence times at temperatures above 1 Kelvin. Here, we demonstrate measurement of a single SnV$^-$ electronic spin with a single-shot readout fidelity of $87.4\%$, which can be further improved to $98.5\%$ by conditioning on multiple readouts. We show this performance is compatible with rapid microwave spin control, demonstrating that the trade-off between optical readout and spin control inherent to group-IV centers in diamond can be overcome for the SnV$^-$. Finally, we use weak quantum measurement to study measurement induced dephasing; this illuminates the fundamental interplay between measurement and decoherence in quantum mechanics, and makes use of the qubit's spin coherence as a metrological tool. Taken together, these results overcome an important hurdle in the development of the SnV$^-$ based quantum technologies, and in the process, develop techniques and understanding broadly applicable to the study of solid-state quantum emitters.
Related papers
- Design and simulation of a transmon qubit chip for Axion detection [103.69390312201169]
Device based on superconducting qubits has been successfully applied in detecting few-GHz single photons via Quantum Non-Demolition measurement (QND)
In this study, we present Qub-IT's status towards the realization of its first superconducting qubit device.
arXiv Detail & Related papers (2023-10-08T17:11:42Z) - Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
We present a scalable approach to increase the size of electronic-spin registers.
We experimentally realize this approach to demonstrate the detection and coherent control of an unknown electronic spin outside the coherence limit of a central NV.
Our work paves the way for engineering larger quantum spin registers with the potential to advance nanoscale sensing, enable correlated noise spectroscopy for error correction, and facilitate the realization of spin-chain quantum wires for quantum communication.
arXiv Detail & Related papers (2023-06-29T17:55:16Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - A Quantum Repeater Platform based on Single SiV$^-$ Centers in Diamond
with Cavity-Assisted, All-Optical Spin Access and Fast Coherent Driving [45.82374977939355]
Quantum key distribution enables secure communication based on the principles of quantum mechanics.
Quantum repeaters are required to establish large-scale quantum networks.
We present an efficient spin-photon interface for quantum repeaters.
arXiv Detail & Related papers (2022-10-28T14:33:24Z) - Measurements of spin-coherence in NV centers for diamond-based quantum
sensors [0.0]
The nitrogen-vacancy center in diamond is a promising alternative to long coherence times.
We present the characterization of the spin-coherence of an ensemble of NV centers in an engineered sample of ultrapure diamond.
arXiv Detail & Related papers (2022-09-12T18:21:50Z) - Five-second coherence of a single spin with single-shot readout in
silicon carbide [84.97423065534817]
We demonstrate single-shot readout of single defects in silicon carbide (SiC)
We achieve over 80% readout fidelity without pre- or post-selection.
We report single spin T2 > 5s, over two orders of magnitude greater than previously reported in this system.
arXiv Detail & Related papers (2021-10-04T17:35:02Z) - Spin digitizer for high-fidelity readout of a cavity-coupled silicon
triple quantum dot [0.0]
We operate an in-line charge sensor within a triple quantum dot, where one of the dots is coupled to a microwave cavity and used to readout the charge states of the other two dots.
Our approach enables high-fidelity spin readout, combining minimal device overhead with flexible qubit operation in semiconductor quantum devices.
arXiv Detail & Related papers (2021-04-08T16:04:14Z) - High-fidelity single-shot readout of single electron spin in diamond
with spin-to-charge conversion [18.95428886889441]
High fidelity single-shot readout of qubits is crucial component for fault-tolerant quantum computing and scalable quantum networks.
Here, we introduce a spin-to-charge conversion method assisted by near-infrared (NIR) light to suppress the spin-flip error.
We achieve an overall fidelity $>$ 95% for the single-shot readout of an NV center electron spin in the presence of high strain and fast spin-flip process.
arXiv Detail & Related papers (2020-09-29T17:36:15Z) - A multiconfigurational study of the negatively charged nitrogen-vacancy
center in diamond [55.58269472099399]
Deep defects in wide band gap semiconductors have emerged as leading qubit candidates for realizing quantum sensing and information applications.
Here we show that unlike single-particle treatments, the multiconfigurational quantum chemistry methods, traditionally reserved for atoms/molecules, accurately describe the many-body characteristics of the electronic states of these defect centers.
arXiv Detail & Related papers (2020-08-24T01:49:54Z) - Narrow-linewidth tin-vacancy centers in a diamond waveguide [5.229236508805071]
Negatively charged tin-vacancy (SnV$-$) centers in diamond have emerged as promising candidates for quantum emitters.
We demonstrate the coupling of SnV$-$ centers to a nanophotonic waveguide.
arXiv Detail & Related papers (2020-05-20T22:55:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.