論文の概要: From Representational Harms to Quality-of-Service Harms: A Case Study on Llama 2 Safety Safeguards
- arxiv url: http://arxiv.org/abs/2403.13213v1
- Date: Wed, 20 Mar 2024 00:22:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 18:27:31.920249
- Title: From Representational Harms to Quality-of-Service Harms: A Case Study on Llama 2 Safety Safeguards
- Title(参考訳): 表現的ハームからサービス品質ハームへ:Llama 2の安全保護を事例として
- Authors: Khaoula Chehbouni, Megha Roshan, Emmanuel Ma, Futian Andrew Wei, Afaf Taïk, Jackie CK Cheung, Golnoosh Farnadi,
- Abstract要約: 我々は、既に緩和されたバイアスのモデルを評価することにより、安全対策の有効性を検討する。
非有毒なプロンプトのセットを作成し、それをLlamaモデルの評価に用いる。
安全と健康のトレードオフは、サービス品質の害につながる可能性のある特定の人口集団にとってより顕著である。
- 参考スコア(独自算出の注目度): 5.006890960283621
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent progress in large language models (LLMs) has led to their widespread adoption in various domains. However, these advancements have also introduced additional safety risks and raised concerns regarding their detrimental impact on already marginalized populations. Despite growing mitigation efforts to develop safety safeguards, such as supervised safety-oriented fine-tuning and leveraging safe reinforcement learning from human feedback, multiple concerns regarding the safety and ingrained biases in these models remain. Furthermore, previous work has demonstrated that models optimized for safety often display exaggerated safety behaviors, such as a tendency to refrain from responding to certain requests as a precautionary measure. As such, a clear trade-off between the helpfulness and safety of these models has been documented in the literature. In this paper, we further investigate the effectiveness of safety measures by evaluating models on already mitigated biases. Using the case of Llama 2 as an example, we illustrate how LLMs' safety responses can still encode harmful assumptions. To do so, we create a set of non-toxic prompts, which we then use to evaluate Llama models. Through our new taxonomy of LLMs responses to users, we observe that the safety/helpfulness trade-offs are more pronounced for certain demographic groups which can lead to quality-of-service harms for marginalized populations.
- Abstract(参考訳): 大規模言語モデル(LLM)の最近の進歩は、様々な領域で広く採用されている。
しかし、これらの進歩は安全性のリスクを増し、既に過疎化されている人口に対する有害な影響を懸念している。
安全指向の微調整の監督や、人間のフィードバックからの安全な強化学習の活用など、安全性の保護を開発するための緩和努力が増加しているが、これらのモデルにおける安全性と微妙なバイアスに関する複数の懸念が残っている。
さらに、安全のために最適化されたモデルは、予防措置として特定の要求に対する応答を控える傾向など、過大な安全行動を示すことが多いことを以前の研究は示している。
このように、これらのモデルの有用性と安全性の明確なトレードオフが文献に記録されている。
本稿では,すでに緩和されているバイアスに対するモデル評価による安全対策の有効性について検討する。
Llama 2 の例を用いて、LLM の安全応答が有害な仮定をエンコードする方法を説明している。
そのために、無害なプロンプトの集合を作り、それをLlamaモデルの評価に用いる。
利用者に対するLSMs応答の新たな分類法により、一部の人口集団では、安全と健康のトレードオフがより顕著になり、人口過疎化によるサービス品質の害につながることが観察された。
関連論文リスト
- SafeBench: A Safety Evaluation Framework for Multimodal Large Language Models [75.67623347512368]
MLLMの安全性評価を行うための総合的なフレームワークであるツールンを提案する。
我々のフレームワークは、包括的な有害なクエリデータセットと自動評価プロトコルで構成されています。
本研究では,広く利用されている15のオープンソースMLLMと6つの商用MLLMの大規模実験を行った。
論文 参考訳(メタデータ) (2024-10-24T17:14:40Z) - How Does Vision-Language Adaptation Impact the Safety of Vision Language Models? [27.46416187893547]
大規模言語モデル(LLM)を大規模視覚言語モデル(LVLM)に変換する視覚言語適応(VL適応)
安全性対策の弱さによる潜在的有害性にもかかわらず、VL適応の安全性への影響に関する詳細な分析は未調査のままである。
論文 参考訳(メタデータ) (2024-10-10T03:12:03Z) - Nothing in Excess: Mitigating the Exaggerated Safety for LLMs via Safety-Conscious Activation Steering [56.92068213969036]
重大言語モデル(LLM)が悪意のある命令から脅威を守るためには、安全性の調整が不可欠である。
近年の研究では、過大な安全性の問題により、安全性に配慮したLCMは、良質な問い合わせを拒否する傾向にあることが明らかになっている。
過大な安全性の懸念を和らげるために,SCANS法を提案する。
論文 参考訳(メタデータ) (2024-08-21T10:01:34Z) - Refuse Whenever You Feel Unsafe: Improving Safety in LLMs via Decoupled Refusal Training [67.30423823744506]
本研究では,Large Language Models (LLMs) の安全性チューニングにおける重要なギャップについて考察する。
我々は,LLMに対して,いかなる応答位置においても有害なプロンプトへのコンプライアンスを拒否する権限を与える新しいアプローチであるDecoupled Refusal Training(DeRTa)を導入する。
DeRTaは、(1)安全応答の開始に有害な応答のセグメントを付加することにより、安全でないコンテンツを認識・回避するようモデルに訓練する、(1)有害応答前フィックスによる最大限の類似度推定、(2)有害応答の開始を通して潜在的害から安全拒絶へ継続的に移行する能力を持つ強化遷移最適化(RTO)という2つの新しいコンポーネントを組み込んでいる。
論文 参考訳(メタデータ) (2024-07-12T09:36:33Z) - Navigating the Safety Landscape: Measuring Risks in Finetuning Large Language Models [65.06446825020578]
大規模言語モデル(LLM)が人間の嗜好に合わせて行動し、推論中に有害な行動を防ぐためには、安全性の調整が不可欠である。
我々は, LLMの安全景観をナビゲートすることで, LLMの微調整のリスクを測定することを目的としている。
論文 参考訳(メタデータ) (2024-05-27T17:31:56Z) - The Art of Defending: A Systematic Evaluation and Analysis of LLM
Defense Strategies on Safety and Over-Defensiveness [56.174255970895466]
大規模言語モデル(LLM)は、自然言語処理アプリケーションにおいて、ますます重要な役割を担っている。
本稿では,SODE(Safety and Over-Defensiveness Evaluation)ベンチマークを提案する。
論文 参考訳(メタデータ) (2023-12-30T17:37:06Z) - SMARLA: A Safety Monitoring Approach for Deep Reinforcement Learning Agents [7.33319373357049]
本稿では,Deep Reinforcement Learning (DRL)エージェント用に特別に設計されたブラックボックス安全監視手法SMARLAを紹介する。
SMARLAは機械学習を利用して、実行中のエージェントの動作を観察し、安全違反を予測する。
実験の結果、SMARLAは偽陽性率の低い安全違反を予測するのに正確であり、違反が起こる前にエージェントの実行の途中で早期に違反を予測することができることが明らかになった。
論文 参考訳(メタデータ) (2023-08-03T21:08:51Z) - Towards Safer Generative Language Models: A Survey on Safety Risks,
Evaluations, and Improvements [76.80453043969209]
本調査では,大規模モデルに関する安全研究の枠組みについて述べる。
まず、広範囲にわたる安全問題を導入し、その後、大型モデルの安全性評価手法を掘り下げる。
トレーニングからデプロイメントまで,大規模なモデルの安全性を高めるための戦略について検討する。
論文 参考訳(メタデータ) (2023-02-18T09:32:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。