Towards an All-Silicon QKD Transmitter Sourced by a Ge-on-Si Light Emitter
- URL: http://arxiv.org/abs/2403.13505v2
- Date: Tue, 30 Apr 2024 09:59:15 GMT
- Title: Towards an All-Silicon QKD Transmitter Sourced by a Ge-on-Si Light Emitter
- Authors: Florian Honz, Nemanja Vokić, Michael Hentschel, Philip Walther, Hannes Hübel, Bernhard Schrenk,
- Abstract summary: We demonstrate a novel quantum key distribution transmitter based on polarization-encoded BB84 protocol.
We experimentally prove that the Ge-on-Si light source can accommodate for quantum key generation by accomplishing raw-key rates of 2.15 kbit/s at a quantum bit error ratio of 7.71% at a symbol rate of 1 GHz.
Our results prove the feasibility of a fully-integrated silicon quantum key distribution transmitter, including its light source, for possible short-reach applications in zero-trust intra-datacenter environments.
- Score: 1.8823998908501027
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We demonstrate a novel transmitter concept for quantum key distribution based on the polarization-encoded BB84 protocol, which is sourced by the incoherent light of a forward-biased Ge-on-Si PIN junction. We investigate two architectures for quantum state preparation, including independent polarization encoding through multiple modulators and a simplified approach leveraging on an interferometric polarization modulator. We experimentally prove that the Ge-on-Si light source can accommodate for quantum key generation by accomplishing raw-key rates of 2.15 kbit/s at a quantum bit error ratio of 7.71% at a symbol rate of 1 GHz. We further investigate the impact of depolarization along fiber-based transmission channels in combination with the broadband nature of the incoherent light source. Our results prove the feasibility of a fully-integrated silicon quantum key distribution transmitter, including its light source, for possible short-reach applications in zero-trust intra-datacenter environments.
Related papers
- Polarization-encoded quantum key distribution with a room-temperature telecom single-photon emitter [47.54990103162742]
Single photon sources (SPSs) are directly applicable in quantum key distribution (QKD)
We report an observation of polarization-encoded QKD using a room-temperature telecom SPS based on a GaN defect.
arXiv Detail & Related papers (2024-09-25T16:17:36Z) - Experimental single-photon quantum key distribution surpassing the fundamental coherent-state rate limit [11.795169912821704]
Single-photon sources are essential for quantum networks, enabling applications ranging from quantum key distribution (QKD) to the burgeoning quantum internet.
Here, we report high-rate QKD using a high-efficiency single-photon source, enabling an SKR transcending the fundamental rate limit of coherent light.
Our findings conclusively demonstrate the superior performance of nanotechnology-based single-photon sources over coherent light for QKD applications, marking a pivotal stride towards the realization of a global quantum internet.
arXiv Detail & Related papers (2024-06-04T07:28:15Z) - Simplified Polarization-Encoding for BB84 QKD Sourced by Incoherent
Light of a Silicon Emitter [0.0]
We investigate a polarization-encoded BB84-QKD transmitter that is simplified from an architectural and technological point-of-view.
We demonstrate a silicon emitter sourcing a low-complexity polarization modulator for secure-key generation at a raw-key rate of 2.8kb/s and QBER of 10.47%.
arXiv Detail & Related papers (2023-10-31T17:57:15Z) - Quantum Key Distribution Using a Quantum Emitter in Hexagonal Boron
Nitride [48.97025221755422]
We demonstrate a room temperature, discrete-variable quantum key distribution system using a bright single photon source in hexagonal-boron nitride.
We have generated keys with one million bits length, and demonstrated a secret key of approximately 70,000 bits, at a quantum bit error rate of 6%.
Our work demonstrates the first proof of concept finite-key BB84 QKD system realised with hBN defects.
arXiv Detail & Related papers (2023-02-13T09:38:51Z) - QUICK$^3$ -- Design of a satellite-based quantum light source for
quantum communication and extended physical theory tests in space [73.86330563258117]
Single photon source can enhance secure data rates in satellite-based quantum key distribution scenarios.
payload is being integrated into a 3U CubeSat and scheduled for launch in 2024 into low Earth orbit.
arXiv Detail & Related papers (2023-01-26T15:34:11Z) - Experimental validation of the Kibble-Zurek Mechanism on a Digital
Quantum Computer [62.997667081978825]
The Kibble-Zurek mechanism captures the essential physics of nonequilibrium quantum phase transitions with symmetry breaking.
We experimentally tested the KZM for the simplest quantum case, a single qubit under the Landau-Zener evolution.
We report on extensive IBM-Q experiments on individual qubits embedded in different circuit environments and topologies.
arXiv Detail & Related papers (2022-08-01T18:00:02Z) - Efficient room-temperature molecular single-photon sources for quantum
key distribution [51.56795970800138]
Quantum Key Distribution (QKD) allows the distribution of cryptographic keys between multiple users in an information-theoretic secure way.
We introduce and demonstrate a proof-of-concept QKD system exploiting a molecule-based single-photon source operating at room temperature and emitting at 785nm.
arXiv Detail & Related papers (2022-02-25T11:52:10Z) - Fibre polarization state compensation in entanglement-based quantum key
distribution [62.997667081978825]
Quantum Key Distribution (QKD) using polarisation encoding can be hard to implement over deployed telecom fibres.
We show a technique for dynamically compensating fibre-induced alteration in a QKD system over deployed fibre.
arXiv Detail & Related papers (2021-07-16T00:53:48Z) - A Quantum Key Distribution Testbed using a Plug&Play Telecom-wavelength
Single-Photon Source [0.0]
We report on the first quantum key distribution (QKD) testbed using a compact benchtop quantum dot single-photon source operating at telecom wavelengths.
The plug&play device emits single-photon pulses at O-band wavelengths and is based on a deterministically-fabricated quantum dot device integrated into a compact Stirling cryocooler.
Our study represents an important step forward in the development of fiber-based quantum-secured communication networks exploiting sub-Poissonian quantum light sources.
arXiv Detail & Related papers (2021-05-07T19:17:12Z) - Towards Integrating True Random Number Generation in Coherent Optical
Transceivers [0.0]
Commercial coherent transceiver sub-systems can support quantum random number generation next to classical data transmission.
Time-interleaved random number generation is demonstrated for 10 Gbaud polarization-multiplexed quadrature phase shift keyed data transmission.
arXiv Detail & Related papers (2020-07-20T15:50:10Z) - Multilevel Polarization for Quantum Channels [5.607676459156789]
We consider the quantum polar code construction using the same channel combining and splitting procedure as in [1], but with a fixed two-qubit Clifford unitary.
For the family of Pauli channels, we show that polarization happens in multi-levels, where synthesized quantum virtual channels tend to become completely noisy, half-noisy, or noiseless.
We present a quantum polar code exploiting the multilevel nature of polarization, and provide an efficient decoding for this code.
arXiv Detail & Related papers (2020-06-22T22:33:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.