論文の概要: Leveraging feature communication in federated learning for remote sensing image classification
- arxiv url: http://arxiv.org/abs/2403.13575v1
- Date: Wed, 20 Mar 2024 13:20:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 16:47:59.807472
- Title: Leveraging feature communication in federated learning for remote sensing image classification
- Title(参考訳): リモートセンシング画像分類のためのフェデレーション学習における特徴コミュニケーションの活用
- Authors: Anh-Kiet Duong, Hoàng-Ân Lê, Minh-Tan Pham,
- Abstract要約: 本研究は,リモートセンシング画像分類に適用されたフェデレートラーニング(FL)のための革新的なコミュニケーション戦略を紹介し,評価する。
調査では,特徴中心のコミュニケーション,擬似重畳化,重みと特徴の両面を利用した組み合わせ手法について検討した。
- 参考スコア(独自算出の注目度): 1.8843687952462738
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the realm of Federated Learning (FL) applied to remote sensing image classification, this study introduces and assesses several innovative communication strategies. Our exploration includes feature-centric communication, pseudo-weight amalgamation, and a combined method utilizing both weights and features. Experiments conducted on two public scene classification datasets unveil the effectiveness of these strategies, showcasing accelerated convergence, heightened privacy, and reduced network information exchange. This research provides valuable insights into the implications of feature-centric communication in FL, offering potential applications tailored for remote sensing scenarios.
- Abstract(参考訳): 本研究は,リモートセンシング画像分類に適用されたフェデレートラーニング(FL)の領域において,いくつかの革新的なコミュニケーション戦略を紹介し,評価する。
調査では,特徴中心のコミュニケーション,擬似重畳化,重みと特徴の両面を利用した組み合わせ手法について検討した。
2つの公開シーン分類データセットで実施された実験は、これらの戦略の有効性を明らかにし、収束の加速、プライバシーの強化、ネットワーク情報交換の削減を示す。
この研究は、FLにおける機能中心通信の影響に関する貴重な洞察を提供し、リモートセンシングシナリオに適した潜在的なアプリケーションを提供する。
関連論文リスト
- Feature-based Federated Transfer Learning: Communication Efficiency, Robustness and Privacy [11.308544280789016]
本稿では,コミュニケーション効率向上のための新しい手法として,特徴に基づくフェデレーション・トランスファー・ラーニングを提案する。
具体的には,提案した特徴に基づくフェデレーション学習において,パラメータ更新ではなく,抽出した特徴と出力をアップロードするように設計する。
画像分類タスクと自然言語処理タスクを用いて,提案手法の性能評価を行い,その有効性を実証した。
論文 参考訳(メタデータ) (2024-05-15T00:43:19Z) - Dual Relation Mining Network for Zero-Shot Learning [48.89161627050706]
本稿では,効果的な視覚・意味的相互作用を実現し,知識伝達のための属性間の意味的関係を学習するためのDual Relation Mining Network(DRMN)を提案する。
具体的には,多層的特徴融合により視覚情報を強化する視覚・意味的関係マイニングのためのデュアルアテンションブロック(DAB)を提案する。
セマンティック・インタラクション・トランスフォーマ(SIT)を用いて画像間の属性表現の一般化を促進する。
論文 参考訳(メタデータ) (2024-05-06T16:31:19Z) - Collaborative Information Dissemination with Graph-based Multi-Agent
Reinforcement Learning [2.9904113489777826]
本稿では,効率的な情報伝達のためのマルチエージェント強化学習(MARL)手法を提案する。
本稿では,各エージェントが個別にメッセージ転送を決定するための情報発信のための部分観測可能なゲーム(POSG)を提案する。
実験の結果,既存の手法よりも訓練済みの方針が優れていることがわかった。
論文 参考訳(メタデータ) (2023-08-25T21:30:16Z) - Re-mine, Learn and Reason: Exploring the Cross-modal Semantic
Correlations for Language-guided HOI detection [57.13665112065285]
ヒューマンオブジェクトインタラクション(HOI)検出は、コンピュータビジョンの課題である。
本稿では,構造化テキスト知識を組み込んだHOI検出フレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-25T14:20:52Z) - Attention Based Feature Fusion For Multi-Agent Collaborative Perception [4.120288148198388]
グラフアテンションネットワーク(GAT)の形での中間的協調認識ソリューションを提案する。
提案手法は,複数の連結エージェント間で交換される中間表現を融合するアテンションベースのアグリゲーション戦略を開発する。
このアプローチは、チャネルレベルと空間レベルの中間特徴写像における重要な領域を適応的に強調することにより、オブジェクト検出精度が向上する。
論文 参考訳(メタデータ) (2023-05-03T12:06:11Z) - Communication-Efficient and Privacy-Preserving Feature-based Federated
Transfer Learning [11.758703301702012]
フェデレーション学習は、クライアントのプライバシを保存することで、関心が高まりつつある。
無線帯域が限られているため、無線リンクによるフェデレート学習の通信効率が重要となる。
上りペイロードを5桁以上削減する革新的な手法として,特徴に基づくフェデレーション・トランスファー・ラーニングを提案する。
論文 参考訳(メタデータ) (2022-09-12T16:48:52Z) - Impact of a DCT-driven Loss in Attention-based Knowledge-Distillation
for Scene Recognition [64.29650787243443]
本稿では, アクティベーションマップの2次元周波数変換を転送前に提案し, 解析する。
この戦略は、シーン認識などのタスクにおける知識伝達可能性を高める。
我々は、この論文で使われているトレーニングおよび評価フレームワークを、http://www.vpu.eps.uam.es/publications/DCTBasedKDForSceneRecognitionで公開しています。
論文 参考訳(メタデータ) (2022-05-04T11:05:18Z) - Deep Relational Metric Learning [84.95793654872399]
本稿では,画像クラスタリングと検索のためのディープリレーショナルメトリック学習フレームワークを提案する。
我々は、クラス間分布とクラス内分布の両方をモデル化するために、異なる側面から画像を特徴付ける特徴のアンサンブルを学ぶ。
広く使われているCUB-200-2011、Cars196、Stanford Online Productsデータセットの実験は、我々のフレームワークが既存の深層学習方法を改善し、非常に競争力のある結果をもたらすことを示した。
論文 参考訳(メタデータ) (2021-08-23T09:31:18Z) - Clustering augmented Self-Supervised Learning: Anapplication to Land
Cover Mapping [10.720852987343896]
本稿では,自己教師型学習のためのクラスタリングに基づくプレテキストタスクを用いて,土地被覆マッピングの新しい手法を提案する。
社会的に関係のある2つのアプリケーションに対して,本手法の有効性を示す。
論文 参考訳(メタデータ) (2021-08-16T19:35:43Z) - CosSGD: Nonlinear Quantization for Communication-efficient Federated
Learning [62.65937719264881]
フェデレーション学習は、これらのクライアントのローカルデータを中央サーバに転送することなく、クライアント間での学習を促進する。
圧縮勾配降下のための非線形量子化を提案し、フェデレーションラーニングで容易に利用することができる。
本システムは,訓練過程の収束と精度を維持しつつ,通信コストを最大3桁まで削減する。
論文 参考訳(メタデータ) (2020-12-15T12:20:28Z) - Global Context-Aware Progressive Aggregation Network for Salient Object
Detection [117.943116761278]
我々は,低レベルな外観特徴,高レベルな意味特徴,グローバルな文脈特徴を統合化するための新しいネットワークGCPANetを提案する。
提案手法は, 定量的かつ定性的に, 最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-03-02T04:26:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。