論文の概要: Multimodal Variational Autoencoder for Low-cost Cardiac Hemodynamics Instability Detection
- arxiv url: http://arxiv.org/abs/2403.13658v3
- Date: Fri, 5 Jul 2024 15:42:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 23:33:46.525959
- Title: Multimodal Variational Autoencoder for Low-cost Cardiac Hemodynamics Instability Detection
- Title(参考訳): 低コスト心血行動態不安定性検出のためのマルチモーダル変分オートエンコーダ
- Authors: Mohammod N. I. Suvon, Prasun C. Tripathi, Wenrui Fan, Shuo Zhou, Xianyuan Liu, Samer Alabed, Venet Osmani, Andrew J. Swift, Chen Chen, Haiping Lu,
- Abstract要約: 本稿では,低コスト胸部X線(CXR)と心電図(ECG)を事前トレーニングで統合する新しい変分オートエンコーダ(textCardioVAE_textX,G$)を提案する。
また,本モデルでは,臨床特徴に直接関連した予測の微妙な解釈が可能である。
- 参考スコア(独自算出の注目度): 8.500041312027596
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in non-invasive detection of cardiac hemodynamic instability (CHDI) primarily focus on applying machine learning techniques to a single data modality, e.g. cardiac magnetic resonance imaging (MRI). Despite their potential, these approaches often fall short especially when the size of labeled patient data is limited, a common challenge in the medical domain. Furthermore, only a few studies have explored multimodal methods to study CHDI, which mostly rely on costly modalities such as cardiac MRI and echocardiogram. In response to these limitations, we propose a novel multimodal variational autoencoder ($\text{CardioVAE}_\text{X,G}$) to integrate low-cost chest X-ray (CXR) and electrocardiogram (ECG) modalities with pre-training on a large unlabeled dataset. Specifically, $\text{CardioVAE}_\text{X,G}$ introduces a novel tri-stream pre-training strategy to learn both shared and modality-specific features, thus enabling fine-tuning with both unimodal and multimodal datasets. We pre-train $\text{CardioVAE}_\text{X,G}$ on a large, unlabeled dataset of $50,982$ subjects from a subset of MIMIC database and then fine-tune the pre-trained model on a labeled dataset of $795$ subjects from the ASPIRE registry. Comprehensive evaluations against existing methods show that $\text{CardioVAE}_\text{X,G}$ offers promising performance (AUROC $=0.79$ and Accuracy $=0.77$), representing a significant step forward in non-invasive prediction of CHDI. Our model also excels in producing fine interpretations of predictions directly associated with clinical features, thereby supporting clinical decision-making.
- Abstract(参考訳): 心臓血行動態不安定症(CHDI)の非侵襲的検出の最近の進歩は、主に単一のデータモダリティ、例えば心臓磁気共鳴画像(MRI)に機械学習技術を適用することに焦点を当てている。
それらの可能性にもかかわらず、これらのアプローチは、特にラベル付き患者データのサイズが限られている場合、医学領域における一般的な課題である。
さらに、心臓MRIや心エコー図のような高価なモダリティに大きく依存するCHDIを研究するためのマルチモーダル手法を探求する研究はほとんどない。
これらの制約に対応するために、我々は、低コストの胸部X線(CXR)と心電図(ECG)モダリティを統合するための、新しいマルチモーダル変分オートエンコーダ($\text{CardioVAE}_\text{X,G}$)を提案する。
具体的には、$\text{CardioVAE}_\text{X,G}$は、共有機能とモダリティ固有の機能の両方を学ぶために、新しいトリストリーム事前トレーニング戦略を導入し、非モーダルデータセットとマルチモーダルデータセットの両方で微調整を可能にする。
私たちはMIMICデータベースのサブセットから50,982ドルの未ラベルのデータセットで$\text{CardioVAE}_\text{X,G}$を事前トレーニングし、ASPIREレジストリから795ドルのラベル付きデータセットで事前トレーニングされたモデルを微調整します。
既存のメソッドに対する包括的な評価は、$\text{CardioVAE}_\text{X,G}$が有望な性能(AUROC $=0.79$と精度$=0.77$)を提供することを示している。
また,本モデルでは,臨床特徴に直接関連した予測の微妙な解釈を行い,臨床的意思決定を支援することにも長けている。
関連論文リスト
- Enhancing Cardiovascular Disease Prediction through Multi-Modal Self-Supervised Learning [0.17708284654788597]
本稿では,限られたアノテートデータセットを用いて心血管疾患の予測を改善するための包括的な枠組みを提案する。
マスク付きオートエンコーダを用いて心電図ECGエンコーダを事前訓練し、生の心電図データから関連する特徴を抽出する。
心筋梗塞などの特定の予測課題について,事前に訓練したエンコーダを微調整した。
論文 参考訳(メタデータ) (2024-11-08T16:32:30Z) - MMIST-ccRCC: A Real World Medical Dataset for the Development of Multi-Modal Systems [12.914295902429]
本稿では,MMIST-CCRCCと呼ばれる実世界のマルチモーダルデータセットを紹介する。
このデータセットは、クリア細胞腎細胞癌(ccRCC)618例の2つの放射線学的モダリティ(CTとMRI)、病理組織学、ゲノム学、臨床データからなる。
このような深刻な欠落率であっても、モダリティの融合は生存予測の改善につながることを示す。
論文 参考訳(メタデータ) (2024-05-02T18:29:05Z) - MEDBind: Unifying Language and Multimodal Medical Data Embeddings [18.954939735299963]
我々は,CXR,ECG,医療用テキストにまたがる共同埋め込みを学習するMEDBind(Medical Electronic patient recorD)を提案する。
テキストデータを中央アンカーとして使用すると、MEDBindはトリモダリティバインディングを備え、トップK検索、ゼロショット、少数ショットベンチマークで競合的なパフォーマンスを提供する。
論文 参考訳(メタデータ) (2024-03-19T16:46:29Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
オープンソースの小型マルチモーダルモデル(SMM)を訓練し、放射線学における未測定臨床ニーズに対する能力ギャップを埋める。
トレーニングのために,697万以上の画像テキストペアからなる大規模なデータセットを組み立てる。
評価のために,GPT-4に基づく実測値CheXpromptを提案する。
LlaVA-Radの推論は高速で、単一のV100 GPU上でプライベート設定で実行できる。
論文 参考訳(メタデータ) (2024-03-12T18:12:02Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
マルチモーダルICUデータを用いて病院内死亡率を予測するための,効率的で説明可能なAIソリューションを提案する。
我々は,臨床データから異種入力を受信し,意思決定を行うマルチモーダル・ラーニングを我々のフレームワークに導入する。
我々の枠組みは、医療研究において重要な要素の発見を容易にする他の臨床課題に容易に移行することができる。
論文 参考訳(メタデータ) (2023-12-29T14:28:04Z) - Uncertainty Quantification in Machine Learning Based Segmentation: A
Post-Hoc Approach for Left Ventricle Volume Estimation in MRI [0.0]
左室容積推定は各種心血管疾患の診断・管理に重要である。
近年の機械学習、特にU-Netのような畳み込みネットワークは、医療画像の自動セグメンテーションを促進している。
本研究では,LV容積予測におけるポストホック不確実性推定のための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-10-30T13:44:55Z) - MELEP: A Novel Predictive Measure of Transferability in Multi-Label ECG Diagnosis [1.3654846342364306]
本稿では,事前学習したモデルから下流のECG診断タスクへの知識伝達の有効性を推定する手段であるMELEPを紹介する。
実験により、MELEPは、小・不均衡のECGデータに基づいて、事前学習した畳み込みと繰り返しの深部ニューラルネットワークの性能を予測できることを示した。
論文 参考訳(メタデータ) (2023-10-27T14:57:10Z) - StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact
Context-encoding Variational Autoencoder [48.2010192865749]
教師なし異常検出(UAD)は、健康な被験者の異常なデータセットからデータ分布を学習し、分布サンプルの抽出に応用することができる。
本研究では,コンテクストエンコーディング(context-encoding)VAE(ceVAE)モデルのコンパクトバージョンと,前処理と後処理のステップを組み合わせて,UADパイプライン(StRegA)を作成することを提案する。
提案したパイプラインは、BraTSデータセットのT2w画像と0.859$pm$0.112の腫瘍を検出しながら、Diceスコアが0.642$pm$0.101に達した。
論文 参考訳(メタデータ) (2022-01-31T14:27:35Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
ECGのデライン化のための既存のデータベースは小さく、サイズやそれらが表す病態の配列に不足している。
まず、原データベースから抽出した基本セグメントのプールを与えられたECGトレースを確率的に合成し、その整合性のある合成トレースに配置するための一連のルールを考案した。
第二に、2つの新しいセグメンテーションに基づく損失関数が開発され、これは、正確な数の独立構造の予測を強制し、サンプル数の削減に焦点をあてて、より密接なセグメンテーション境界を創出することを目的としている。
論文 参考訳(メタデータ) (2021-11-25T10:11:41Z) - Brain Image Synthesis with Unsupervised Multivariate Canonical
CSC$\ell_4$Net [122.8907826672382]
我々は,新しいCSC$ell_4$Netを用いて,イントレとイントラモーダルの両方にまたがる専用特徴を学習することを提案する。
論文 参考訳(メタデータ) (2021-03-22T05:19:40Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。