論文の概要: Quantitative Analysis of AI-Generated Texts in Academic Research: A Study of AI Presence in Arxiv Submissions using AI Detection Tool
- arxiv url: http://arxiv.org/abs/2403.13812v1
- Date: Fri, 9 Feb 2024 17:20:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 07:17:26.062551
- Title: Quantitative Analysis of AI-Generated Texts in Academic Research: A Study of AI Presence in Arxiv Submissions using AI Detection Tool
- Title(参考訳): 学術研究におけるAI生成テキストの定量的分析:AI検出ツールを用いたArxivサブミッションにおけるAI存在の検討
- Authors: Arslan Akram,
- Abstract要約: 本研究は,学術機関がArxivに投稿するために用いた,意図的に制作されたコンテンツを閲覧する手法について分析する。
統計分析によると、Originality.aiは98%の精度で正確である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many people are interested in ChatGPT since it has become a prominent AIGC model that provides high-quality responses in various contexts, such as software development and maintenance. Misuse of ChatGPT might cause significant issues, particularly in public safety and education, despite its immense potential. The majority of researchers choose to publish their work on Arxiv. The effectiveness and originality of future work depend on the ability to detect AI components in such contributions. To address this need, this study will analyze a method that can see purposely manufactured content that academic organizations use to post on Arxiv. For this study, a dataset was created using physics, mathematics, and computer science articles. Using the newly built dataset, the following step is to put originality.ai through its paces. The statistical analysis shows that Originality.ai is very accurate, with a rate of 98%.
- Abstract(参考訳): ソフトウェア開発やメンテナンスなど、さまざまなコンテキストで高品質なレスポンスを提供するAIGCモデルとして注目されているため、多くの人はChatGPTに興味を持っています。
ChatGPTの誤用は、特に公共の安全と教育において重大な問題を引き起こす可能性がある。
ほとんどの研究者はArxivに関する研究を公表することを選択している。
将来の作業の有効性と独創性は、そのような貢献の中でAIコンポーネントを検出する能力に依存する。
そこで本研究では,学術機関がArxivに投稿するために用いた,目的的に製作されたコンテンツを表示する手法について検討する。
本研究では,物理,数学,計算機科学の論文を用いてデータセットを作成した。
新たに構築されたデータセットを使用して、次のステップは、オリジナル性.aiをそのペースで実行することだ。
統計分析によると、Originality.aiは98%の精度で正確である。
関連論文リスト
- Artificial Intelligence Driven Course Generation: A Case Study Using ChatGPT [0.0]
本研究は,ChatGPTを教材として活用することを目的としている。
主な目的は、AI駆動コース生成の効率、品質、および影響を評価することである。
この研究は、AIが教育コンテンツ制作に革命をもたらす可能性を強調している。
論文 参考訳(メタデータ) (2024-11-02T21:59:02Z) - Artificial intelligence to automate the systematic review of scientific
literature [0.0]
我々は過去15年間に提案されたAI技術について,研究者が科学的文献の体系的な分析を行うのを助けるために調査を行った。
現在サポートされているタスク、適用されるアルゴリズムの種類、34の初等研究で提案されているツールについて説明する。
論文 参考訳(メタデータ) (2024-01-13T19:12:49Z) - Generative AI in Writing Research Papers: A New Type of Algorithmic Bias
and Uncertainty in Scholarly Work [0.38850145898707145]
大規模言語モデル(LLM)と生成AIツールは、バイアスを特定し、対処する上での課題を提示している。
生成型AIツールは、不正な一般化、幻覚、レッド・チーム・プロンプトのような敵攻撃を目標とする可能性がある。
研究原稿の執筆過程に生成AIを組み込むことで,新しいタイプの文脈依存型アルゴリズムバイアスがもたらされることがわかった。
論文 参考訳(メタデータ) (2023-12-04T04:05:04Z) - On Responsible Machine Learning Datasets with Fairness, Privacy, and Regulatory Norms [56.119374302685934]
AI技術の信頼性に関する深刻な懸念があった。
機械学習とディープラーニングのアルゴリズムは、開発に使用されるデータに大きく依存する。
本稿では,責任あるルーブリックを用いてデータセットを評価するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-24T14:01:53Z) - Towards Possibilities & Impossibilities of AI-generated Text Detection:
A Survey [97.33926242130732]
大規模言語モデル(LLM)は、自然言語処理(NLP)の領域に革命をもたらし、人間のようなテキスト応答を生成する能力を持つ。
これらの進歩にもかかわらず、既存の文献のいくつかは、LLMの潜在的な誤用について深刻な懸念を提起している。
これらの懸念に対処するために、研究コミュニティのコンセンサスは、AI生成テキストを検出するアルゴリズムソリューションを開発することである。
論文 参考訳(メタデータ) (2023-10-23T18:11:32Z) - An Empirical Study of AI Generated Text Detection Tools [0.0]
ChatGPTには大きな約束がありますが、その誤用によって起こりうる深刻な問題があります。
GPTkit"、"GPTZero"、"Originality"、"Sapling"、"Writer"、"Zylalab"を含む6つの異なる人工知能(AI)テキスト識別システムは、精度が55.29から97.0%である。
論文 参考訳(メタデータ) (2023-09-27T12:44:12Z) - pyBibX -- A Python Library for Bibliometric and Scientometric Analysis
Powered with Artificial Intelligence Tools [0.0]
pyBibXは、Scopus、Web of Science、PubMedからソースされた生データファイルの総合的な書誌的および科学的な分析を行うために開発されたピソンライブラリである。
このライブラリは総合的なEDAを実行し、視覚的に魅力的な図形を通して結果を提示する。
埋め込み、トピックモデリング、テキスト要約、その他の一般的な言語処理タスクを含むAI機能を備えている。
論文 参考訳(メタデータ) (2023-04-27T20:06:07Z) - A Complete Survey on Generative AI (AIGC): Is ChatGPT from GPT-4 to
GPT-5 All You Need? [112.12974778019304]
生成AI(AIGC、つまりAI生成コンテンツ)は、テキスト、画像、その他を分析、作成する能力により、あらゆる場所で話題を呼んだ。
純粋な分析から創造へと移行するAIの時代において、ChatGPTは最新の言語モデルであるGPT-4とともに、多くのAIGCタスクからなるツールである。
本研究は,テキスト,画像,ビデオ,3Dコンテンツなど,出力タイプに基づいたAIGCタスクの技術的開発に焦点を当てている。
論文 参考訳(メタデータ) (2023-03-21T10:09:47Z) - Data-centric Artificial Intelligence: A Survey [47.24049907785989]
近年、AIにおけるデータの役割は大幅に拡大し、データ中心AIという新たな概念が生まれた。
本稿では,データ中心型AIの必要性について論じ,続いて3つの一般的なデータ中心型目標の全体像を考察する。
これは、データライフサイクルのさまざまな段階にわたるタスクのグローバルなビューを提供する、初めての総合的な調査である、と私たちは信じています。
論文 参考訳(メタデータ) (2023-03-17T17:44:56Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - Artificial Intelligence in Concrete Materials: A Scientometric View [77.34726150561087]
本章は, コンクリート材料用AI研究の主目的と知識構造を明らかにすることを目的としている。
まず、1990年から2020年にかけて発行された389の雑誌記事が、ウェブ・オブ・サイエンスから検索された。
キーワード共起分析やドキュメント共起分析などのサイエントメトリックツールを用いて,研究分野の特徴と特徴を定量化した。
論文 参考訳(メタデータ) (2022-09-17T18:24:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。