論文の概要: Analyzing the Variations in Emergency Department Boarding and Testing the Transferability of Forecasting Models across COVID-19 Pandemic Waves in Hong Kong: Hybrid CNN-LSTM approach to quantifying building-level socioecological risk
- arxiv url: http://arxiv.org/abs/2403.13842v1
- Date: Sun, 17 Mar 2024 11:48:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-22 18:28:52.700310
- Title: Analyzing the Variations in Emergency Department Boarding and Testing the Transferability of Forecasting Models across COVID-19 Pandemic Waves in Hong Kong: Hybrid CNN-LSTM approach to quantifying building-level socioecological risk
- Title(参考訳): 香港における新型コロナウイルスパンデミック・ウェーブにおける救急部門ボードの変動分析と予測モデルの転送可能性 : ビルレベルの社会生態リスクを定量化するためのハイブリッドCNN-LSTMアプローチ
- Authors: Eman Leung, Jingjing Guan, Kin On Kwok, CT Hung, CC. Ching, CK. Chung, Hector Tsang, EK Yeoh, Albert Lee,
- Abstract要約: 救急部門(ED)の搭乗は、患者の予後不良と健康システムのパフォーマンスに関連付けられている。
しかし、新型コロナウイルス(COVID-19)に先立って効果的な予測モデルは稀であり、近日中には欠落している。
ここでは、香港の病院局、保健省、住宅局から得られたパブリックドメインデータに対して、ハイブリッド畳み込みニューラルネットワーク(CNN)-Long短期記憶(LSTM)モデルを適用した。
- 参考スコア(独自算出の注目度): 0.2985164765599213
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Emergency department's (ED) boarding (defined as ED waiting time greater than four hours) has been linked to poor patient outcomes and health system performance. Yet, effective forecasting models is rare before COVID-19, lacking during the peri-COVID era. Here, a hybrid convolutional neural network (CNN)-Long short-term memory (LSTM) model was applied to public-domain data sourced from Hong Kong's Hospital Authority, Department of Health, and Housing Authority. In addition, we sought to identify the phase of the COVID-19 pandemic that most significantly perturbed our complex adaptive healthcare system, thereby revealing a stable pattern of interconnectedness among its components, using deep transfer learning methodology. Our result shows that 1) the greatest proportion of days with ED boarding was found between waves four and five; 2) the best-performing model for forecasting ED boarding was observed between waves four and five, which was based on features representing time-invariant residential buildings' built environment and sociodemographic profiles and the historical time series of ED boarding and case counts, compared to during the waves when best-performing forecasting is based on time-series features alone; and 3) when the model built from the period between waves four and five was applied to data from other waves via deep transfer learning, the transferred model enhanced the performance of indigenous models.
- Abstract(参考訳): 救急部門(ED)の搭乗時間(ED待ち時間は4時間以上と定義されている)は、患者の予後や健康システムのパフォーマンスに関連付けられている。
しかし、新型コロナウイルス(COVID-19)に先立って効果的な予測モデルは稀であり、近日中には欠落している。
ここでは、香港の病院局、保健省、住宅局から得られたパブリックドメインデータに対して、ハイブリッド畳み込みニューラルネットワーク(CNN)-Long短期記憶(LSTM)モデルを適用した。
さらに、我々は、私たちの複雑な適応医療システムに最も大きな影響を与えている新型コロナウイルスパンデミックの段階を特定し、深層移動学習手法を用いて、コンポーネント間の相互接続性の安定したパターンを明らかにすることを模索した。
私たちの結果は
1) ED搭乗日数が最も多いのは4~5波であった。
2) 時変住宅の建築環境と社会デマロジカルな特徴を反映した4~5波間におけるED搭乗予測のベストパフォーマンスモデルを, 時系列特徴のみに基づくベストパフォーマンス予測を行う場合と比較して, ED搭乗数とケースカウントの履歴時系列に基づいて検討した。
3) 深層移動学習により, 4波から5波までの期間に構築したモデルを他の波からのデータに適用すると, 移動モデルにより固有モデルの性能が向上した。
関連論文リスト
- Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
EHRPDと呼ばれる新しいEHRデータ生成モデルを提案する。
時間間隔推定を組み込んだ拡散モデルである。
我々は2つの公開データセットで実験を行い、忠実さ、プライバシー、実用性の観点からEPHPDを評価する。
論文 参考訳(メタデータ) (2024-06-20T02:20:23Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - tdCoxSNN: Time-Dependent Cox Survival Neural Network for Continuous-time
Dynamic Prediction [19.38247205641199]
本研究では,時間依存型Coxサバイバルニューラルネットワーク(tdCoxSNN)を提案する。
提案手法と共同モデリングおよびランドマーク手法を広範囲なシミュレーションにより評価・比較する。
論文 参考訳(メタデータ) (2023-07-12T03:03:40Z) - Deep Latent State Space Models for Time-Series Generation [68.45746489575032]
状態空間ODEに従って進化する潜伏変数を持つ列の生成モデルLS4を提案する。
近年の深層状態空間モデル(S4)に着想を得て,LS4の畳み込み表現を利用して高速化を実現する。
LS4は, 実世界のデータセット上での限界分布, 分類, 予測スコアにおいて, 従来の連続時間生成モデルよりも有意に優れていた。
論文 参考訳(メタデータ) (2022-12-24T15:17:42Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
本稿では,不規則なサンプルデータの下で潜在表現をパラメータ化する生成時間対イベントモデルSurvLatent ODEを提案する。
そこで,本モデルでは,事象特異的ハザード関数の形状を指定せずに,複数の競合イベントの生存時間を柔軟に推定する。
SurvLatent ODEは、DVTリスクグループを成層化するために、現在の臨床標準であるKhorana Riskスコアより優れている。
論文 参考訳(メタデータ) (2022-04-20T17:28:08Z) - A spatiotemporal machine learning approach to forecasting COVID-19
incidence at the county level in the United States [2.9822184411723645]
本稿では,米国内の郡レベルでの新型コロナウイルスの流行を予測するための,長期記憶アーキテクチャに基づくデータ駆動型モデルであるCOVID-LSTMを提案する。
われわれは、時間的入力として毎週の新規症例数と、Facebookのハンドエンジニアリングによる空間的特徴を用いて、疾患の時間的および空間的拡散を捉えている。
4週間の予測で、私たちのモデルは平均50のケースで、COVIDhubアンサンブルよりも正確です。
論文 参考訳(メタデータ) (2021-09-24T17:40:08Z) - Modeling the geospatial evolution of COVID-19 using spatio-temporal
convolutional sequence-to-sequence neural networks [48.7576911714538]
ポルトガルは世界最大の発生率を持つ国であり、人口10万人当たりの14日間の発生率が1000を超える。
その重要性にもかかわらず、covid-19の地理空間的進化の正確な予測は依然として課題である。
論文 参考訳(メタデータ) (2021-05-06T15:24:00Z) - Comparison of Traditional and Hybrid Time Series Models for Forecasting
COVID-19 Cases [0.5849513679510832]
2019年12月の新型コロナウイルスの感染は、すでに世界中で数百万人を感染させ、拡大し続けています。
流行のカーブが平ら化し始めた直後、多くの国が再びケースの増加を目撃し始めている。
したがって、国家当局や保健当局に将来の時代の即時戦略を提供するには、時系列予測モデルの徹底的な分析が必要です。
論文 参考訳(メタデータ) (2021-05-05T14:56:27Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
我々は,多くの地域の流行傾向を同時に予測するテンソル法を開発した。
stelarは離散時間差分方程式のシステムを通じて潜在時間正規化を組み込むことで長期予測を可能にする。
我々は、カウンティレベルと州レベルのCOVID-19データの両方を用いて実験を行い、このモデルが流行の興味深い潜伏パターンを識別できることを示します。
論文 参考訳(メタデータ) (2020-12-08T21:21:47Z) - A Recurrent Neural Network and Differential Equation Based
Spatiotemporal Infectious Disease Model with Application to COVID-19 [3.464871689508835]
我々は、ディファレンス微分方程式(SIR)とリカレントニューラルネットワーク(RNN)に基づく統合疾患モデルを開発する。
イタリアのCO-19データをトレーニングし,既存の時間モデル(NN,SIR,ARIMA)を1日,3日,1週間の予測で上回っていることを示す。
論文 参考訳(メタデータ) (2020-07-14T07:04:57Z) - Adaptive Prediction Timing for Electronic Health Records [3.308743964406688]
適応率で患者結果を予測する新しい,より現実的なアプローチを導入する。
リカレントニューラルネットワーク(RNN)とベイズ埋め込み層に新しいアグリゲーション法を適用し,適応予測のタイミングを示す。
入院48時間後,本モデルではスタティックウインドウと同等の性能を示した。
論文 参考訳(メタデータ) (2020-03-05T12:02:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。