論文の概要: Machine Learning and Vision Transformers for Thyroid Carcinoma Diagnosis: A review
- arxiv url: http://arxiv.org/abs/2403.13843v1
- Date: Sun, 17 Mar 2024 17:45:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-22 18:28:52.697623
- Title: Machine Learning and Vision Transformers for Thyroid Carcinoma Diagnosis: A review
- Title(参考訳): 甲状腺癌診断のための機械学習と視覚変換器
- Authors: Yassine Habchi, Hamza Kheddar, Yassine Himeur, Abdelkrim Boukabou, Ammar Chouchane, Abdelmalik Ouamane, Shadi Atalla, Wathiq Mansoor,
- Abstract要約: 本稿では, 甲状腺癌診断におけるAIベースのアプローチ, 特にトランスフォーマーを用いたアプローチについて概説する。
人工知能(AI)アルゴリズム,フレームワークの目標,使用するコンピューティング環境に基づいて,これらの手法の新たな分類システムを導入する。
この論文は、教師なし、教師なし、または混在したアプローチを通じて、TCの診断と治療を支援するためのAI機器の重要性を強調している。
- 参考スコア(独自算出の注目度): 3.2071249735671348
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The growing interest in developing smart diagnostic systems to help medical experts process extensive data for treating incurable diseases has been notable. In particular, the challenge of identifying thyroid cancer (TC) has seen progress with the use of machine learning (ML) and big data analysis, incorporating transformers to evaluate TC prognosis and determine the risk of malignancy in individuals. This review article presents a summary of various studies on AIbased approaches, especially those employing transformers, for diagnosing TC. It introduces a new categorization system for these methods based on artifcial intelligence (AI) algorithms, the goals of the framework, and the computing environments used. Additionally, it scrutinizes and contrasts the available TC datasets by their features. The paper highlights the importance of AI instruments in aiding the diagnosis and treatment of TC through supervised, unsupervised, or mixed approaches, with a special focus on the ongoing importance of transformers in medical diagnostics and disease management. It further discusses the progress made and the continuing obstacles in this area. Lastly, it explores future directions and focuses within this research feld.
- Abstract(参考訳): 医療専門家が不治の病気を治療するための広範なデータ処理を支援するスマート診断システムの開発への関心が高まっている。
特に甲状腺癌(TC)を特定することの課題は、機械学習(ML)とビッグデータ分析を使用することで進展しており、TC予後を評価し、個人の悪性度リスクを決定するためにトランスフォーマーを取り入れている。
本稿では,TCLの診断におけるAIベースのアプローチ,特にトランスフォーマーを用いたアプローチに関するさまざまな研究の概要を紹介する。
人工知能(AI)アルゴリズム,フレームワークの目標,使用するコンピューティング環境に基づいて,これらの手法の新たな分類システムを導入する。
さらに、利用可能なTCデータセットの機能を精査し、対比する。
本稿では, 医療診断と疾患管理におけるトランスフォーマーの継続的な重要性に焦点をあて, 教師なし, 教師なし, あるいは混成アプローチを通じて, TCの診断と治療を支援するためのAI機器の重要性を強調した。
さらに、この領域における進歩と継続的な障害について論じる。
最後に、今後の方向性を探求し、この研究課題に焦点をあてる。
関連論文リスト
- Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
本研究は,人工知能(AI)モデルを用いた医用合成データ生成の臨床評価に焦点を当てた。
本論文は,a) 医用専門家による合成画像の体系的評価のためのプロトコルを提示し,b) 高分解能WCE画像合成のための新しい変分オートエンコーダモデルであるTIDE-IIを評価する。
その結果、TIDE-IIは臨床的に関連性のあるWCE画像を生成し、データの不足に対処し、診断ツールの強化に役立つことがわかった。
論文 参考訳(メタデータ) (2024-10-31T19:48:50Z) - Breast Cancer Diagnosis: A Comprehensive Exploration of Explainable Artificial Intelligence (XAI) Techniques [38.321248253111776]
乳がんの診断・診断における説明可能な人工知能(XAI)技術の適用について検討する。
複雑なAIモデルと実用的な医療アプリケーションの間のギャップを埋めることにおけるXAIの可能性を強調することを目的としている。
論文 参考訳(メタデータ) (2024-06-01T18:50:03Z) - Enhancing Breast Cancer Diagnosis in Mammography: Evaluation and Integration of Convolutional Neural Networks and Explainable AI [0.0]
本研究では,畳み込みニューラルネットワーク(CNN)と説明可能な人工知能(XAI)を組み合わせて乳がんの診断を高度化するための統合フレームワークを提案する。
この方法論は、データセットの制限に対処するために、精巧なデータ前処理パイプラインと高度なデータ拡張技術を含んでいる。
本研究の焦点は,モデル予測の解釈におけるXAIの有効性を評価することである。
論文 参考訳(メタデータ) (2024-04-05T05:00:21Z) - Towards AI-Based Precision Oncology: A Machine Learning Framework for Personalized Counterfactual Treatment Suggestions based on Multi-Omics Data [0.05025737475817938]
本稿では,個別のがん治療提案のためのモジュール型機械学習フレームワークを提案する。
このフレームワークは、データ駆動がん研究に固有の重要な課題に対処するように調整されている。
本手法は,臨床医に現実的な意思決定支援ツールを提供することを目的としている。
論文 参考訳(メタデータ) (2024-02-19T14:54:20Z) - AI in Thyroid Cancer Diagnosis: Techniques, Trends, and Future
Directions [3.2071249735671348]
本報告では, 甲状腺癌の診断に使用される人工知能(AI)技術に関する大量の論文を要約する。
この研究は、教師なし、教師なし、またはハイブリッド技術を通じて、AIベースのツールが甲状腺癌の診断と治療をどのようにサポートするかに焦点を当てている。
論文 参考訳(メタデータ) (2023-08-25T17:27:53Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
メディコオートマチックポリープセグメンテーション(Medico 2020)と「メディコ:医療画像の透明性(MedAI 2021)」コンペティション。
本報告では, それぞれのコントリビューションを包括的に分析し, ベストパフォーマンスメソッドの強さを強調し, クリニックへの臨床翻訳の可能性について考察する。
論文 参考訳(メタデータ) (2023-07-30T16:08:45Z) - Meta-information-aware Dual-path Transformer for Differential Diagnosis
of Multi-type Pancreatic Lesions in Multi-phase CT [41.199716328468895]
膵病変の分類と分節の可能性を活用するために, デュアルパストランスフォーマーを開発した。
提案手法は, CNN-based segmentation path (S-path) と Transformer-based classification path (C-path) から構成される。
以上の結果から,膵病変の完全分類の正確な分類と分類が可能であることが示唆された。
論文 参考訳(メタデータ) (2023-03-02T03:34:28Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
臨床診断は、臨床ノートに基づいて患者に診断符号を割り当てることを目的としており、臨床意思決定において重要な役割を担っている。
本稿では,臨床自動診断のための継承誘導階層と共起グラフの伝播を組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-01-27T13:16:51Z) - Deep Learning in Computer-Aided Diagnosis and Treatment of Tumors: A
Survey [42.16618852663992]
近年,腫瘍の診断・治療が深層学習の話題となっている。
本研究は, 腫瘍のコンピュータ診断・治療における深層学習の応用について述べる。
論文 参考訳(メタデータ) (2020-11-02T12:42:19Z) - Deep learning for detection and segmentation of artefact and disease
instances in gastrointestinal endoscopy [7.840459682652335]
Endoscopy Computer Vision Challenge (EndoCV) は、信頼性の高いコンピュータ支援型診断・診断内視鏡システムの開発における卓越した問題を解決するためのクラウドソーシングイニシアチブである。
1)視覚的解釈を妨げる多階級の人工物の存在、2)微妙な前駆体とがんの異常を特定するのが困難である。
EndoCV 2020の課題は、これらのミッションにおける研究上の問題に対処するために設計されている。
論文 参考訳(メタデータ) (2020-10-12T21:22:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。