Sequential Modeling of Complex Marine Navigation: Case Study on a Passenger Vessel (Student Abstract)
- URL: http://arxiv.org/abs/2403.13909v1
- Date: Wed, 20 Mar 2024 18:29:55 GMT
- Title: Sequential Modeling of Complex Marine Navigation: Case Study on a Passenger Vessel (Student Abstract)
- Authors: Yimeng Fan, Pedram Agand, Mo Chen, Edward J. Park, Allison Kennedy, Chanwoo Bae,
- Abstract summary: This paper uses a machine learning approach to explore ways to reduce vessel fuel consumption.
We leverage a real-world dataset spanning two years of a ferry in west coast Canada.
Our focus centers on the creation of a time series forecasting model.
It serves as an evaluative tool to assess the proficiency of the ferry's operation under the captain's guidance.
- Score: 5.253408036933116
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The maritime industry's continuous commitment to sustainability has led to a dedicated exploration of methods to reduce vessel fuel consumption. This paper undertakes this challenge through a machine learning approach, leveraging a real-world dataset spanning two years of a ferry in west coast Canada. Our focus centers on the creation of a time series forecasting model given the dynamic and static states, actions, and disturbances. This model is designed to predict dynamic states based on the actions provided, subsequently serving as an evaluative tool to assess the proficiency of the ferry's operation under the captain's guidance. Additionally, it lays the foundation for future optimization algorithms, providing valuable feedback on decision-making processes. To facilitate future studies, our code is available at \url{https://github.com/pagand/model_optimze_vessel/tree/AAAI}
Related papers
- Efficient Self-Supervised Learning for Earth Observation via Dynamic Dataset Curation [67.23953699167274]
Self-supervised learning (SSL) has enabled the development of vision foundation models for Earth Observation (EO)
In EO, this challenge is amplified by the redundancy and heavy-tailed distributions common in satellite imagery.
We propose a dynamic dataset pruning strategy designed to improve SSL pre-training by maximizing dataset diversity and balance.
arXiv Detail & Related papers (2025-04-09T15:13:26Z) - FLP-XR: Future Location Prediction on Extreme Scale Maritime Data in Real-time [0.8937169040399775]
This paper introduces FLP-XR, a model that leverages maritime mobility data to construct a robust framework that offers precise predictions.
We demonstrate the efficiency of our approach through an extensive experimental study using three real-world AIS datasets.
arXiv Detail & Related papers (2025-03-10T13:31:42Z) - An Efficient Occupancy World Model via Decoupled Dynamic Flow and Image-assisted Training [50.71892161377806]
DFIT-OccWorld is an efficient 3D occupancy world model that leverages decoupled dynamic flow and image-assisted training strategy.
Our model forecasts future dynamic voxels by warping existing observations using voxel flow, whereas static voxels are easily obtained through pose transformation.
arXiv Detail & Related papers (2024-12-18T12:10:33Z) - DiffuTraj: A Stochastic Vessel Trajectory Prediction Approach via Guided Diffusion Process [23.42712306116432]
Vessel maneuvers, characterized by their inherent complexity and indeterminacy, require vessel trajectory prediction system.
Conventional trajectory prediction methods utilize latent variables to represent the multi-modality of vessel motion.
We explicitly simulate the transition of vessel motion from uncertainty towards a state of certainty.
arXiv Detail & Related papers (2024-10-12T14:50:18Z) - AdaOcc: Adaptive Forward View Transformation and Flow Modeling for 3D Occupancy and Flow Prediction [56.72301849123049]
We present our solution for the Vision-Centric 3D Occupancy and Flow Prediction track in the nuScenes Open-Occ dataset challenge at CVPR 2024.
Our innovative approach involves a dual-stage framework that enhances 3D occupancy and flow predictions by incorporating adaptive forward view transformation and flow modeling.
Our method combines regression with classification to address scale variations in different scenes, and leverages predicted flow to warp current voxel features to future frames, guided by future frame ground truth.
arXiv Detail & Related papers (2024-07-01T16:32:15Z) - Outlier detection in maritime environments using AIS data and deep recurrent architectures [5.399126243770847]
We present a methodology based on deep recurrent models for maritime surveillance, over publicly available Automatic Identification System (AIS) data.
The setup employs a deep Recurrent Neural Network (RNN)-based model, for encoding and reconstructing the observed ships' motion patterns.
Our approach is based on a thresholding mechanism, over the calculated errors between observed and reconstructed motion patterns.
arXiv Detail & Related papers (2024-06-14T12:15:15Z) - Is Ego Status All You Need for Open-Loop End-to-End Autonomous Driving? [84.17711168595311]
End-to-end autonomous driving has emerged as a promising research direction to target autonomy from a full-stack perspective.
nuScenes dataset, characterized by relatively simple driving scenarios, leads to an under-utilization of perception information in end-to-end models.
We introduce a new metric to evaluate whether the predicted trajectories adhere to the road.
arXiv Detail & Related papers (2023-12-05T11:32:31Z) - Autonomous Port Navigation With Ranging Sensors Using Model-Based
Reinforcement Learning [2.3439981951927296]
This research proposes a navigational algorithm which can navigate an inland vessel in a wide variety of complex port scenarios.
The proposed methodology is based on a machine learning approach that has recently set benchmark results in various domains.
Results show that our approach outperforms the commonly used dynamic window approach and a benchmark model-free reinforcement learning algorithm.
arXiv Detail & Related papers (2023-11-17T14:22:40Z) - Fuel Consumption Prediction for a Passenger Ferry using Machine Learning
and In-service Data: A Comparative Study [5.516843968790116]
This paper presents models that can predict fuel consumption using in-service data collected from a passenger ship.
The best predictive performance was from a model developed using the XGboost technique which is a boosting ensemble approach.
arXiv Detail & Related papers (2023-10-19T19:35:38Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting.
We adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them.
We conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies.
arXiv Detail & Related papers (2023-09-18T19:49:22Z) - How To Not Train Your Dragon: Training-free Embodied Object Goal
Navigation with Semantic Frontiers [94.46825166907831]
We present a training-free solution to tackle the object goal navigation problem in Embodied AI.
Our method builds a structured scene representation based on the classic visual simultaneous localization and mapping (V-SLAM) framework.
Our method propagates semantics on the scene graphs based on language priors and scene statistics to introduce semantic knowledge to the geometric frontiers.
arXiv Detail & Related papers (2023-05-26T13:38:33Z) - Forecasting Future Instance Segmentation with Learned Optical Flow and
Warping [31.879514593973195]
In this paper we investigate the usage of optical flow for predicting future semantic segmentations.
Results on the Cityscapes dataset demonstrate the effectiveness of optical-flow methods.
arXiv Detail & Related papers (2022-11-15T11:01:12Z) - Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion [88.45326906116165]
We present a new framework to formulate the trajectory prediction task as a reverse process of motion indeterminacy diffusion (MID)
We encode the history behavior information and the social interactions as a state embedding and devise a Transformer-based diffusion model to capture the temporal dependencies of trajectories.
Experiments on the human trajectory prediction benchmarks including the Stanford Drone and ETH/UCY datasets demonstrate the superiority of our method.
arXiv Detail & Related papers (2022-03-25T16:59:08Z) - Waypoint Models for Instruction-guided Navigation in Continuous
Environments [68.2912740006109]
We develop a class of language-conditioned waypoint prediction networks to examine this question.
We measure task performance and estimated execution time on a profiled LoCoBot robot.
Our models outperform prior work in VLN-CE and set a new state-of-the-art on the public leaderboard.
arXiv Detail & Related papers (2021-10-05T17:55:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.