FLP-XR: Future Location Prediction on Extreme Scale Maritime Data in Real-time
- URL: http://arxiv.org/abs/2503.13491v2
- Date: Wed, 19 Mar 2025 07:34:50 GMT
- Title: FLP-XR: Future Location Prediction on Extreme Scale Maritime Data in Real-time
- Authors: George S. Theodoropoulos, Andreas Patakis, Andreas Tritsarolis, Yannis Theodoridis,
- Abstract summary: This paper introduces FLP-XR, a model that leverages maritime mobility data to construct a robust framework that offers precise predictions.<n>We demonstrate the efficiency of our approach through an extensive experimental study using three real-world AIS datasets.
- Score: 0.8937169040399775
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Movements of maritime vessels are inherently complex and challenging to model due to the dynamic and often unpredictable nature of maritime operations. Even within structured maritime environments, such as shipping lanes and port approaches, where vessels adhere to navigational rules and predefined sea routes, uncovering underlying patterns is far from trivial. The necessity for accurate modeling of the mobility of maritime vessels arises from the numerous applications it serves, including risk assessment for collision avoidance, optimization of shipping routes, and efficient port management. This paper introduces FLP-XR, a model that leverages maritime mobility data to construct a robust framework that offers precise predictions while ensuring extremely fast training and inference capabilities. We demonstrate the efficiency of our approach through an extensive experimental study using three real-world AIS datasets. According to the experimental results, FLP-XR outperforms the current state-of-the-art in many cases, whereas it performs 2-3 orders of magnitude faster in terms of training and inference.
Related papers
- SuperFlow++: Enhanced Spatiotemporal Consistency for Cross-Modal Data Pretraining [62.433137130087445]
SuperFlow++ is a novel framework that integrates pretraining and downstream tasks using consecutive camera pairs.
We show that SuperFlow++ outperforms state-of-the-art methods across diverse tasks and driving conditions.
With strong generalizability and computational efficiency, SuperFlow++ establishes a new benchmark for data-efficient LiDAR-based perception in autonomous driving.
arXiv Detail & Related papers (2025-03-25T17:59:57Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - A Computer Vision Approach to Estimate the Localized Sea State [45.498315114762484]
This research focuses on utilizing sea images in operational envelopes captured by a single stationary camera mounted on the ship bridge.
The collected images are used to train a deep learning model to automatically recognize the state of the sea based on the Beaufort scale.
arXiv Detail & Related papers (2024-07-04T09:07:25Z) - Outlier detection in maritime environments using AIS data and deep recurrent architectures [5.399126243770847]
We present a methodology based on deep recurrent models for maritime surveillance, over publicly available Automatic Identification System (AIS) data.
The setup employs a deep Recurrent Neural Network (RNN)-based model, for encoding and reconstructing the observed ships' motion patterns.
Our approach is based on a thresholding mechanism, over the calculated errors between observed and reconstructed motion patterns.
arXiv Detail & Related papers (2024-06-14T12:15:15Z) - A Bionic Data-driven Approach for Long-distance Underwater Navigation with Anomaly Resistance [59.21686775951903]
Various animals exhibit accurate navigation using environment cues.
Inspired by animal navigation, this work proposes a bionic and data-driven approach for long-distance underwater navigation.
The proposed approach uses measured geomagnetic data for the navigation, and requires no GPS systems or geographical maps.
arXiv Detail & Related papers (2024-02-06T13:20:56Z) - Multi-Path Long-Term Vessel Trajectories Forecasting with Probabilistic Feature Fusion for Problem Shifting [8.970625329763559]
This paper addresses the challenge of boosting the precision of multi-path long-term vessel trajectory forecasting on engineered sequences of Automatic Identification System (AIS) data.
We have developed a deep auto-encoder model and a phased framework approach to predict the next 12 hours of vessel trajectories using 1 to 3 hours of AIS data as input.
We have shown that our model achieves more accurate forecasting with average and median errors of 11km and 6km, respectively, a 25% improvement from the current state-of-the-art approaches.
arXiv Detail & Related papers (2023-10-29T09:15:22Z) - Rapid Flood Inundation Forecast Using Fourier Neural Operator [77.30160833875513]
Flood inundation forecast provides critical information for emergency planning before and during flood events.
High-resolution hydrodynamic modeling has become more accessible in recent years, however, predicting flood extents at the street and building levels in real-time is still computationally demanding.
We present a hybrid process-based and data-driven machine learning (ML) approach for flood extent and inundation depth prediction.
arXiv Detail & Related papers (2023-07-29T22:49:50Z) - Towards Improved Prediction of Ship Performance: A Comparative Analysis
on In-service Ship Monitoring Data for Modeling the Speed-Power Relation [0.0]
We compare the accuracy of data-driven machine learning algorithms to traditional methods for assessing ship performance.
Our results showed that a simple neural network outperformed established semi-empirical formulas following first principles.
These findings suggest that data-driven algorithms may be more effective for predicting ship performance in practical applications.
arXiv Detail & Related papers (2022-12-26T09:39:33Z) - Data-Driven Short-Term Daily Operational Sea Ice Regional Forecasting [52.77986479871782]
Global warming made the Arctic available for marine operations and created demand for reliable operational sea ice forecasts.
In this work, we investigate the performance of the U-Net model trained in two regimes for predicting sea ice for up to the next 10 days.
We show that this deep learning model can outperform simple baselines by a significant margin and improve its quality by using additional weather data and training on multiple regions.
arXiv Detail & Related papers (2022-10-17T09:14:35Z) - Data-Driven System Identification of 6-DoF Ship Motion in Waves with
Neural Networks [0.0]
Short-term temporal predictions of ship responses given the current wave environment and ship state would enable enhanced decision-making onboard for manned and unmanned vessels.
A methodology is developed with long short-term memory (LSTM) neural networks to represent the motions of a free running David Taylor Model Basin (DTMB) 5415 destroyer operating at 20 knots in Sea State 7 stern-quartering irregular seas.
Wave elevation time histories are given by artificial wave probes that travel with the estimated encounter frame and serve as input into the neural network, while the output is the 6-DOF temporal ship motion response.
arXiv Detail & Related papers (2021-11-02T17:51:35Z) - Ship Performance Monitoring using Machine-learning [2.1485350418225244]
The hydrodynamic performance of a sea-going ship varies over its lifespan due to factors like marine fouling and the condition of the anti-fouling paint system.
The current work uses machine-learning (ML) methods to estimate the hydrodynamic performance of a ship using the onboard recorded in-service data.
arXiv Detail & Related papers (2021-10-07T16:18:16Z) - Continuous Control with Deep Reinforcement Learning for Autonomous
Vessels [8.491129580099757]
We present a new strategy called state-action rotation to improve agent's performance in unseen situations.
Experimental results show that the state-action rotation on top of the CVN consistently improves the rate of arrival to a destination.
arXiv Detail & Related papers (2021-06-27T03:12:32Z) - Occupancy Anticipation for Efficient Exploration and Navigation [97.17517060585875]
We propose occupancy anticipation, where the agent uses its egocentric RGB-D observations to infer the occupancy state beyond the visible regions.
By exploiting context in both the egocentric views and top-down maps our model successfully anticipates a broader map of the environment.
Our approach is the winning entry in the 2020 Habitat PointNav Challenge.
arXiv Detail & Related papers (2020-08-21T03:16:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.