Neural Network-Based Processing and Reconstruction of Compromised Biophotonic Image Data
- URL: http://arxiv.org/abs/2403.14324v1
- Date: Thu, 21 Mar 2024 11:44:25 GMT
- Title: Neural Network-Based Processing and Reconstruction of Compromised Biophotonic Image Data
- Authors: Michael John Fanous, Paloma Casteleiro Costa, Cagatay Isil, Luzhe Huang, Aydogan Ozcan,
- Abstract summary: The integration of deep learning techniques with biophotonic setups has opened new horizons in bioimaging.
This article provides an in-depth review of the diverse measurement aspects that researchers intentionally impair in their biophotonic setups.
We discuss various biophotonic methods that have successfully employed this strategic approach.
- Score: 0.12427543342032196
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The integration of deep learning techniques with biophotonic setups has opened new horizons in bioimaging. A compelling trend in this field involves deliberately compromising certain measurement metrics to engineer better bioimaging tools in terms of cost, speed, and form-factor, followed by compensating for the resulting defects through the utilization of deep learning models trained on a large amount of ideal, superior or alternative data. This strategic approach has found increasing popularity due to its potential to enhance various aspects of biophotonic imaging. One of the primary motivations for employing this strategy is the pursuit of higher temporal resolution or increased imaging speed, critical for capturing fine dynamic biological processes. This approach also offers the prospect of simplifying hardware requirements/complexities, thereby making advanced imaging standards more accessible in terms of cost and/or size. This article provides an in-depth review of the diverse measurement aspects that researchers intentionally impair in their biophotonic setups, including the point spread function, signal-to-noise ratio, sampling density, and pixel resolution. By deliberately compromising these metrics, researchers aim to not only recuperate them through the application of deep learning networks, but also bolster in return other crucial parameters, such as the field-of-view, depth-of-field, and space-bandwidth product. Here, we discuss various biophotonic methods that have successfully employed this strategic approach. These techniques span broad applications and showcase the versatility and effectiveness of deep learning in the context of compromised biophotonic data. Finally, by offering our perspectives on the future possibilities of this rapidly evolving concept, we hope to motivate our readers to explore novel ways of balancing hardware compromises with compensation via AI.
Related papers
- SaccadeDet: A Novel Dual-Stage Architecture for Rapid and Accurate Detection in Gigapixel Images [50.742420049839474]
'SaccadeDet' is an innovative architecture for gigapixel-level object detection, inspired by the human eye saccadic movement.
Our approach, evaluated on the PANDA dataset, achieves an 8x speed increase over the state-of-the-art methods.
It also demonstrates significant potential in gigapixel-level pathology analysis through its application to Whole Slide Imaging.
arXiv Detail & Related papers (2024-07-25T11:22:54Z) - Harnessing The Power of Attention For Patch-Based Biomedical Image Classification [0.0]
We present a novel architecture based on self-attention mechanisms as an alternative to conventional CNNs.
We introduce the Lancoz5 technique, which adapts variable image sizes to higher resolutions.
Our methods address critical challenges faced by attention-based vision models, including inductive bias, weight sharing, receptive field limitations, and efficient data handling.
arXiv Detail & Related papers (2024-04-01T06:22:28Z) - Kartezio: Evolutionary Design of Explainable Pipelines for Biomedical
Image Analysis [0.0]
We introduce Kartezio, a computational strategy that generates transparent and easily interpretable image processing pipelines.
The pipelines thus generated exhibit comparable precision to state-of-the-art Deep Learning approaches on instance segmentation tasks.
We also deployed Kartezio to solve semantic and instance segmentation problems in four real-world Use Cases.
arXiv Detail & Related papers (2023-02-28T17:02:35Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
Medical ultrasound imaging relies heavily on high-quality signal processing to provide reliable and interpretable image reconstructions.
Deep learning based methods, which are optimized in a data-driven fashion, have gained popularity.
A relatively new paradigm combines the power of the two: leveraging data-driven deep learning, as well as exploiting domain knowledge.
arXiv Detail & Related papers (2022-04-09T13:04:36Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
coarse parametrisation in propagation distance, position errors and partial coherence frequently menaces the experiment viability.
A modern Deep Learning framework is used to correct autonomously the setup incoherences, thus improving the quality of a ptychography reconstruction.
We tested our system on both synthetic datasets and also on real data acquired at the TwinMic beamline of the Elettra synchrotron facility.
arXiv Detail & Related papers (2021-05-18T10:15:17Z) - Enhancing Photorealism Enhancement [83.88433283714461]
We present an approach to enhancing the realism of synthetic images using a convolutional network.
We analyze scene layout distributions in commonly used datasets and find that they differ in important ways.
We report substantial gains in stability and realism in comparison to recent image-to-image translation methods.
arXiv Detail & Related papers (2021-05-10T19:00:49Z) - Deep learning-based super-resolution fluorescence microscopy on small
datasets [20.349746411933495]
Deep learning has shown the potentials to reduce the technical barrier and obtain super-resolution from diffraction-limited images.
We demonstrate a new convolutional neural network-based approach that is successfully trained with small datasets and super-resolution images.
This model can be applied to other biomedical imaging modalities such as MRI and X-ray imaging, where obtaining large training datasets is challenging.
arXiv Detail & Related papers (2021-03-07T03:17:47Z) - Depth image denoising using nuclear norm and learning graph model [107.51199787840066]
Group-based image restoration methods are more effective in gathering the similarity among patches.
For each patch, we find and group the most similar patches within a searching window.
The proposed method is superior to other current state-of-the-art denoising methods in both subjective and objective criterion.
arXiv Detail & Related papers (2020-08-09T15:12:16Z) - Advances in Deep Learning for Hyperspectral Image Analysis--Addressing
Challenges Arising in Practical Imaging Scenarios [7.41157183358269]
We will review advances in the community that leverage deep learning for robust hyperspectral image analysis.
challenges include limited ground truth and high dimensional nature of the data.
Specifically, we will review unsupervised, semi-supervised and active learning approaches to image analysis.
arXiv Detail & Related papers (2020-07-16T19:51:02Z) - Image Segmentation Using Deep Learning: A Survey [58.37211170954998]
Image segmentation is a key topic in image processing and computer vision.
There has been a substantial amount of works aimed at developing image segmentation approaches using deep learning models.
arXiv Detail & Related papers (2020-01-15T21:37:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.