Harnessing The Power of Attention For Patch-Based Biomedical Image Classification
- URL: http://arxiv.org/abs/2404.00949v2
- Date: Sun, 9 Jun 2024 18:12:34 GMT
- Title: Harnessing The Power of Attention For Patch-Based Biomedical Image Classification
- Authors: Gousia Habib, Shaima Qureshi, Malik ishfaq,
- Abstract summary: We present a novel architecture based on self-attention mechanisms as an alternative to conventional CNNs.
We introduce the Lancoz5 technique, which adapts variable image sizes to higher resolutions.
Our methods address critical challenges faced by attention-based vision models, including inductive bias, weight sharing, receptive field limitations, and efficient data handling.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Biomedical image analysis is of paramount importance for the advancement of healthcare and medical research. Although conventional convolutional neural networks (CNNs) are frequently employed in this domain, facing limitations in capturing intricate spatial and temporal relationships at the pixel level due to their reliance on fixed-sized windows and immutable filter weights post-training. These constraints impede their ability to adapt to input fluctuations and comprehend extensive long-range contextual information. To overcome these challenges, a novel architecture based on self-attention mechanisms as an alternative to conventional CNNs.The proposed model utilizes attention-based mechanisms to surpass the limitations of CNNs. The key component of our strategy is the combination of non-overlapping (vanilla patching) and novel overlapped Shifted Patching Techniques (S.P.T.s), which enhances the model's capacity to capture local context and improves generalization. Additionally, we introduce the Lancoz5 interpolation technique, which adapts variable image sizes to higher resolutions, facilitating better analysis of high-resolution biomedical images. Our methods address critical challenges faced by attention-based vision models, including inductive bias, weight sharing, receptive field limitations, and efficient data handling. Experimental evidence shows the effectiveness of proposed model in generalizing to various biomedical imaging tasks. The attention-based model, combined with advanced data augmentation methodologies, exhibits robust modeling capabilities and superior performance compared to existing approaches. The integration of S.P.T.s significantly enhances the model's ability to capture local context, while the Lancoz5 interpolation technique ensures efficient handling of high-resolution images.
Related papers
- TBConvL-Net: A Hybrid Deep Learning Architecture for Robust Medical Image Segmentation [6.013821375459473]
We introduce a novel deep learning architecture for medical image segmentation.
Our proposed model shows consistent improvement over the state of the art on ten publicly available datasets.
arXiv Detail & Related papers (2024-09-05T09:14:03Z) - A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
In computer vision, it is well-known that a lack of data diversity will impair model performance.
We propose a simple yet effective data augmentation approach by leveraging advancements in generative models.
Background augmentation, in particular, significantly improves the models' robustness and generalization capabilities.
arXiv Detail & Related papers (2024-08-01T07:40:00Z) - Cross-Modal Domain Adaptation in Brain Disease Diagnosis: Maximum Mean Discrepancy-based Convolutional Neural Networks [0.0]
Brain disorders are a major challenge to global health, causing millions of deaths each year.
Accurate diagnosis of these diseases relies heavily on advanced medical imaging techniques such as MRI and CT.
The scarcity of annotated data poses a significant challenge in deploying machine learning models for medical diagnosis.
arXiv Detail & Related papers (2024-05-06T07:44:46Z) - Optimizing Universal Lesion Segmentation: State Space Model-Guided Hierarchical Networks with Feature Importance Adjustment [0.0]
We introduce Mamba-Ahnet, a novel integration of State Space Model (SSM) and Advanced Hierarchical Network (AHNet) within the MAMBA framework.
Mamba-Ahnet combines SSM's feature extraction and comprehension with AHNet's attention mechanisms and image reconstruction, aiming to enhance segmentation accuracy and robustness.
arXiv Detail & Related papers (2024-04-26T08:15:43Z) - SeUNet-Trans: A Simple yet Effective UNet-Transformer Model for Medical
Image Segmentation [0.0]
We propose a simple yet effective UNet-Transformer (seUNet-Trans) model for medical image segmentation.
In our approach, the UNet model is designed as a feature extractor to generate multiple feature maps from the input images.
By leveraging the UNet architecture and the self-attention mechanism, our model not only retains the preservation of both local and global context information but also is capable of capturing long-range dependencies between input elements.
arXiv Detail & Related papers (2023-10-16T01:13:38Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Bridging Synthetic and Real Images: a Transferable and Multiple
Consistency aided Fundus Image Enhancement Framework [61.74188977009786]
We propose an end-to-end optimized teacher-student framework to simultaneously conduct image enhancement and domain adaptation.
We also propose a novel multi-stage multi-attention guided enhancement network (MAGE-Net) as the backbones of our teacher and student network.
arXiv Detail & Related papers (2023-02-23T06:16:15Z) - MedViT: A Robust Vision Transformer for Generalized Medical Image
Classification [4.471084427623774]
We propose a robust yet efficient CNN-Transformer hybrid model which is equipped with the locality of CNNs and the global connectivity of vision Transformers.
Our proposed hybrid model demonstrates its high robustness and generalization ability compared to the state-of-the-art studies on a large-scale collection of standardized MedMNIST-2D datasets.
arXiv Detail & Related papers (2023-02-19T02:55:45Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
We present a novel contrastive learning strategy called it Proactive Pseudo-Intervention (PPI)
PPI leverages proactive interventions to guard against image features with no causal relevance.
We also devise a novel causally informed salience mapping module to identify key image pixels to intervene, and show it greatly facilitates model interpretability.
arXiv Detail & Related papers (2020-12-06T20:30:26Z) - Limited-angle tomographic reconstruction of dense layered objects by
dynamical machine learning [68.9515120904028]
Limited-angle tomography of strongly scattering quasi-transparent objects is a challenging, highly ill-posed problem.
Regularizing priors are necessary to reduce artifacts by improving the condition of such problems.
We devised a recurrent neural network (RNN) architecture with a novel split-convolutional gated recurrent unit (SC-GRU) as the building block.
arXiv Detail & Related papers (2020-07-21T11:48:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.