論文の概要: FHAUC: Privacy Preserving AUC Calculation for Federated Learning using Fully Homomorphic Encryption
- arxiv url: http://arxiv.org/abs/2403.14428v1
- Date: Thu, 21 Mar 2024 14:36:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-22 13:59:14.684751
- Title: FHAUC: Privacy Preserving AUC Calculation for Federated Learning using Fully Homomorphic Encryption
- Title(参考訳): FHAUC:完全同型暗号を用いたフェデレーション学習のためのプライバシ保護型AUC計算
- Authors: Cem Ata Baykara, Ali Burak Ünal, Mete Akgün,
- Abstract要約: 本稿では,水平連合学習システムにおいてAUCを計算可能な,効率的で正確で,堅牢で,よりセキュアな評価アルゴリズムを提案する。
提案手法は,データサイズに関わらず,100の参加者を含む連合学習システムのAUCを効率よく計算し,99.93%の精度をわずか0.68秒で達成する。
- 参考スコア(独自算出の注目度): 1.9662978733004604
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ensuring data privacy is a significant challenge for machine learning applications, not only during model training but also during evaluation. Federated learning has gained significant research interest in recent years as a result. Current research on federated learning primarily focuses on preserving privacy during the training phase. However, model evaluation has not been adequately addressed, despite the potential for significant privacy leaks during this phase as well. In this paper, we demonstrate that the state-of-the-art AUC computation method for federated learning systems, which utilizes differential privacy, still leaks sensitive information about the test data while also requiring a trusted central entity to perform the computations. More importantly, we show that the performance of this method becomes completely unusable as the data size decreases. In this context, we propose an efficient, accurate, robust, and more secure evaluation algorithm capable of computing the AUC in horizontal federated learning systems. Our approach not only enhances security compared to the current state-of-the-art but also surpasses the state-of-the-art AUC computation method in both approximation performance and computational robustness, as demonstrated by experimental results. To illustrate, our approach can efficiently calculate the AUC of a federated learning system involving 100 parties, achieving 99.93% accuracy in just 0.68 seconds, regardless of data size, while providing complete data privacy.
- Abstract(参考訳): データプライバシの確保は、モデルトレーニング中だけでなく、評価中においても、マシンラーニングアプリケーションにとって重要な課題である。
フェデレーテッド・ラーニングは近年、大きな研究の関心を集めている。
連合学習に関する現在の研究は、主にトレーニング期間中のプライバシの保護に焦点を当てている。
しかし、この段階での重大なプライバシー漏洩の可能性にもかかわらず、モデル評価は適切に対処されていない。
本稿では、差分プライバシを利用するフェデレーション学習システムにおける最先端のAUC計算手法が、信頼性の高い中央エンティティを必要としながら、テストデータに関する機密情報を漏洩していることを示す。
さらに,データサイズが小さくなるにつれて,本手法の性能が完全に損なわれることを示す。
本稿では,AUCを水平連合型学習システムで計算可能な,効率的で正確で,堅牢で,よりセキュアな評価アルゴリズムを提案する。
提案手法は,現状技術よりもセキュリティを向上するだけでなく,実験結果から示すように,近似性能と計算堅牢性の両方において,最先端のAUC計算手法を超越する。
提案手法は,データサイズに関係なく,100のパーティを含む連合学習システムのAUCを効率よく計算し,99.93%の精度をわずか0.68秒で達成し,完全なデータプライバシを提供する。
関連論文リスト
- DWFL: Enhancing Federated Learning through Dynamic Weighted Averaging [2.499907423888049]
本稿では,タンパク質配列分類のためのディープフィードフォワードニューラルネットワークに基づく強化フェデレーション学習法を提案する。
本稿では,動的重み付き連合学習(DWFL)について紹介する。
DWFLの有効性を評価するために,実世界のタンパク質配列データセットを用いて実験を行った。
論文 参考訳(メタデータ) (2024-11-07T20:24:23Z) - Benchmarking Vision Language Model Unlearning via Fictitious Facial Identity Dataset [94.13848736705575]
我々は、未学習アルゴリズムの有効性を頑健に評価するために設計された新しいVLMアンラーニングベンチマークであるFacial Identity Unlearning Benchmark (FIUBench)を紹介する。
情報ソースとその露出レベルを正確に制御する2段階評価パイプラインを適用した。
FIUBench 内の 4 つのベースライン VLM アンラーニングアルゴリズムの評価により,すべての手法がアンラーニング性能に制限されていることが明らかとなった。
論文 参考訳(メタデータ) (2024-11-05T23:26:10Z) - FEDLAD: Federated Evaluation of Deep Leakage Attacks and Defenses [50.921333548391345]
フェデレーテッド・ラーニング(Federated Learning)は、分散型機械学習パラダイムをプライバシ保護するものだ。
近年の研究では、Deep Leakageと呼ばれる勾配技術によって、民間の真実データを復元できることが判明している。
本稿では、Deep Leakage攻撃と防御を評価するための総合的なベンチマークであるFEDLAD Framework(Federated Evaluation of Deep Leakage Attacks and Defenses)を紹介する。
論文 参考訳(メタデータ) (2024-11-05T11:42:26Z) - An Empirical Study of Efficiency and Privacy of Federated Learning
Algorithms [2.994794762377111]
今日の世界では、IoTネットワークの急速な拡大とスマートデバイスの普及により、相当量の異種データが生成される。
このデータを効果的に扱うためには、プライバシーと効率の両立を保証するために高度なデータ処理技術が必要である。
フェデレーション学習は、モデルをローカルにトレーニングし、データをプライバシを保存するためにサーバに集約する分散学習手法として登場した。
論文 参考訳(メタデータ) (2023-12-24T00:13:41Z) - LAVA: Data Valuation without Pre-Specified Learning Algorithms [20.578106028270607]
我々は、下流学習アルゴリズムに不利な方法でトレーニングデータを評価できる新しいフレームワークを導入する。
本研究では,訓練と検証セット間の非伝統的なクラスワイドワッサースタイン距離に基づいて,トレーニングセットに関連する検証性能のプロキシを開発する。
距離は、特定のリプシッツ条件下での任意のモデルに対する検証性能の上限を特徴付けることを示す。
論文 参考訳(メタデータ) (2023-04-28T19:05:16Z) - Balanced Self-Paced Learning for AUC Maximization [88.53174245457268]
既存のセルフパッチ方式は、ポイントワイズAUCに限られている。
我々のアルゴリズムは閉形式解に基づいて定常点に収束する。
論文 参考訳(メタデータ) (2022-07-08T02:09:32Z) - Precision-Weighted Federated Learning [1.8160945635344528]
フェデレート学習環境で訓練されたモデルのパラメータの重み付け平均を計算する際に,勾配のばらつきを考慮した新しいアルゴリズムを提案する。
本手法は,2つの異なるデータ分割戦略 (IID/non-IID) を持つ標準画像分類データセットを用いて,資源制約環境下での手法の性能と速度を測定した。
論文 参考訳(メタデータ) (2021-07-20T17:17:10Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
データセットバイアスは、機械学習における不公平な原因の1つです。
不確実性に基づくALで訓練されたモデルが保護クラスの決定において公平であるかどうかを検討する。
また,勾配反転(GRAD)やBALDなどのアルゴリズム的公正性手法の相互作用についても検討する。
論文 参考訳(メタデータ) (2021-04-14T14:20:22Z) - On Deep Learning with Label Differential Privacy [54.45348348861426]
ラベルは機密性があり、保護されるべきであるとするマルチクラス分類について検討する。
本稿では,ラベル差分プライバシを用いたディープニューラルネットワークのトレーニングアルゴリズムを提案し,いくつかのデータセットで評価を行う。
論文 参考訳(メタデータ) (2021-02-11T15:09:06Z) - Federated Doubly Stochastic Kernel Learning for Vertically Partitioned
Data [93.76907759950608]
本稿では,垂直分割データに対する2倍のカーネル学習アルゴリズムを提案する。
本稿では,FDSKLがカーネルを扱う場合,最先端のフェデレーション学習手法よりもはるかに高速であることを示す。
論文 参考訳(メタデータ) (2020-08-14T05:46:56Z) - SPEED: Secure, PrivatE, and Efficient Deep learning [2.283665431721732]
私たちは、強力なプライバシー制約に対処できるディープラーニングフレームワークを導入します。
協調学習、差分プライバシー、同型暗号化に基づいて、提案手法は最先端技術に進化する。
論文 参考訳(メタデータ) (2020-06-16T19:31:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。