論文の概要: MathVerse: Does Your Multi-modal LLM Truly See the Diagrams in Visual Math Problems?
- arxiv url: http://arxiv.org/abs/2403.14624v1
- Date: Thu, 21 Mar 2024 17:59:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-22 13:10:20.553408
- Title: MathVerse: Does Your Multi-modal LLM Truly See the Diagrams in Visual Math Problems?
- Title(参考訳): MathVerse: あなたのマルチモーダルLCMは、視覚数学の問題でダイアグラムを本当に見ますか?
- Authors: Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou, Pan Lu, Kai-Wei Chang, Peng Gao, Hongsheng Li,
- Abstract要約: MLLMの公平かつ詳細な評価のために設計された全周視覚数学ベンチマークであるMathVerseを紹介する。
我々は,2,612の高品位・多目的数学問題を,公開情報源の図を用いて慎重に収集する。
このアプローチにより、MathVerseは、数学的推論のためのビジュアルダイアグラムを、どの程度のMLLMが真に理解できるかを包括的に評価することができる。
- 参考スコア(独自算出の注目度): 99.0305256706604
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The remarkable progress of Multi-modal Large Language Models (MLLMs) has garnered unparalleled attention, due to their superior performance in visual contexts. However, their capabilities in visual math problem-solving remain insufficiently evaluated and understood. We investigate current benchmarks to incorporate excessive visual content within textual questions, which potentially assist MLLMs in deducing answers without truly interpreting the input diagrams. To this end, we introduce MathVerse, an all-around visual math benchmark designed for an equitable and in-depth evaluation of MLLMs. We meticulously collect 2,612 high-quality, multi-subject math problems with diagrams from publicly available sources. Each problem is then transformed by human annotators into six distinct versions, each offering varying degrees of information content in multi-modality, contributing to 15K test samples in total. This approach allows MathVerse to comprehensively assess whether and how much MLLMs can truly understand the visual diagrams for mathematical reasoning. In addition, we propose a Chain-of-Thought (CoT) evaluation strategy for a fine-grained assessment of the output answers. Rather than naively judging True or False, we employ GPT-4(V) to adaptively extract crucial reasoning steps, and then score each step with detailed error analysis, which can reveal the intermediate CoT reasoning quality by MLLMs. We hope the MathVerse benchmark may provide unique insights to guide the future development of MLLMs. Project page: https://mathverse-cuhk.github.io
- Abstract(参考訳): MLLM(Multi-modal Large Language Models)の顕著な進歩は、視覚的文脈における優れた性能のため、例外なく注目されている。
しかし、視覚数学の問題解決におけるそれらの能力は、まだ十分に評価され理解されていない。
本稿では,入力図を真に解釈することなく,MLLMによる解答の導出を支援するため,テキスト質問に過剰な視覚的コンテンツを組み込むための現在のベンチマークについて検討する。
この目的のために,MLLMの公平かつ詳細な評価のために設計された全周視覚数学ベンチマークであるMathVerseを紹介する。
我々は,2,612の高品位・多目的数学問題を,公開情報源の図を用いて慎重に収集する。
それぞれの問題は、人間のアノテータによって6つの異なるバージョンに変換され、それぞれが多モードで様々な情報コンテンツを提供し、合計で15Kのテストサンプルに寄与する。
このアプローチにより、MathVerseは、数学的推論のためのビジュアルダイアグラムを、どの程度のMLLMが真に理解できるかを包括的に評価することができる。
さらに,出力応答のきめ細かい評価のためのChain-of-Thought (CoT) 評価戦略を提案する。
我々はTrue や False を経時的に判断する代わりに GPT-4(V) を用いて重要な推論ステップを適応的に抽出し,各ステップを詳細な誤差解析によりスコアし,MLLM による中間的 CoT 推論品質を明らかにする。
MathVerseベンチマークがMLLMの今後の開発をガイドするためのユニークな洞察を提供することを期待している。
プロジェクトページ: https://mathverse-cuhk.github.io
関連論文リスト
- DynaMath: A Dynamic Visual Benchmark for Evaluating Mathematical Reasoning Robustness of Vision Language Models [19.787224412654872]
In-deepth Assessment of Vision-Language Models (VLMs) のための動的視覚数学ベンチマークであるDynaMathを紹介する。
DynaMathには501の高品質でマルチトピックなシード質問が含まれており、それぞれがPythonプログラムとして表現されている。
その結果,10変種すべてにおいて正解された種子質問の割合として定義される最悪のモデル精度は,平均値よりも有意に低いことがわかった。
論文 参考訳(メタデータ) (2024-10-29T17:29:19Z) - Polymath: A Challenging Multi-modal Mathematical Reasoning Benchmark [53.61633384281524]
PolyMATHはMLLMの認知的推論能力を評価するためのベンチマークである。
PolyMATHで最高のスコアは41%、36%、27%で、それぞれClaude-3.5 Sonnet、GPT-4o、Gemini-1.5 Proが獲得した。
さらにきめ細かい誤差解析により、これらのモデルは空間関係を理解し、引き出された高レベルの推論を行うのに苦労していることが明らかとなった。
論文 参考訳(メタデータ) (2024-10-06T20:35:41Z) - Math-PUMA: Progressive Upward Multimodal Alignment to Enhance Mathematical Reasoning [5.9767694994869425]
MLLM(Multimodal Large Language Models)は、テキストベースの数学的問題の解法として優れている。
彼らは、主に自然の風景画像で訓練されているため、数学的図形に苦しむ。
本研究では,プログレッシブ・アップワード・マルチモーダルアライメントに着目したMath-PUMAを提案する。
論文 参考訳(メタデータ) (2024-08-16T10:11:05Z) - MathScape: Evaluating MLLMs in multimodal Math Scenarios through a Hierarchical Benchmark [29.9945601202065]
我々は,視覚情報とテキスト情報の組み合わせの理解と適用を強調する新しいベンチマークであるMathScapeを提案する。
MathScapeは、MLLMの理論的理解と応用能力を評価し、写真に基づく数学問題シナリオを評価するように設計されている。
我々は11の高度MLLMに対して多次元評価を行い、最も洗練されたモデルでさえベンチマークが困難であることを明らかにした。
論文 参考訳(メタデータ) (2024-08-14T13:23:43Z) - AI-Assisted Generation of Difficult Math Questions [78.7547836422727]
現在の訓練は、数学的推論をコア能力として位置づけている。
多様で挑戦的な数学の質問には、控えめな需要がある。
本稿では,LLMの強みとHuman-in-the-loopアプローチを組み合わせた設計枠組みを提案する。
論文 参考訳(メタデータ) (2024-07-30T17:55:36Z) - Math-LLaVA: Bootstrapping Mathematical Reasoning for Multimodal Large Language Models [62.815222721144636]
我々は、LLaVA-1.5ベースのMathV360Kで微調整されたモデルであるMath-LLaVAを紹介する。
この手法はLLaVA-1.5のマルチモーダル数学的推論能力を著しく改善する。
Math-LLaVAは、MMMUベンチマークで大幅に改善された一般化性を示している。
論文 参考訳(メタデータ) (2024-06-25T05:43:21Z) - MathBench: Evaluating the Theory and Application Proficiency of LLMs with a Hierarchical Mathematics Benchmark [82.64129627675123]
MathBenchは、大規模言語モデルの数学的能力を厳格に評価する新しいベンチマークである。
MathBenchは幅広い数学の分野にまたがっており、理論的な理解と実践的な問題解決のスキルの両方を詳細に評価している。
論文 参考訳(メタデータ) (2024-05-20T17:52:29Z) - Can LLMs Master Math? Investigating Large Language Models on Math Stack Exchange [25.419977967846144]
大規模言語モデル(LLM)は、様々な自然言語タスクにおいて例外的な機能を示した。
本稿では、複雑な数学的問題解決をナビゲートする上でのLLMの限界について考察する。
論文 参考訳(メタデータ) (2024-03-30T12:48:31Z) - GSM-Plus: A Comprehensive Benchmark for Evaluating the Robustness of LLMs as Mathematical Problem Solvers [68.77382332826167]
大規模言語モデル (LLM) は、様々な数学的推論ベンチマークで顕著な性能を達成している。
1つの必須かつ頻繁な証拠は、数学の質問がわずかに変更されたとき、LLMは誤って振る舞うことができることである。
このことは, LLMの数学推論能力の頑健性を評価するために, 幅広い質問のバリエーションを試すことによるものである。
論文 参考訳(メタデータ) (2024-02-29T15:26:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。