論文の概要: Can LLMs Master Math? Investigating Large Language Models on Math Stack Exchange
- arxiv url: http://arxiv.org/abs/2404.00344v1
- Date: Sat, 30 Mar 2024 12:48:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 04:20:25.933698
- Title: Can LLMs Master Math? Investigating Large Language Models on Math Stack Exchange
- Title(参考訳): LLMのマスター数学は可能か? 数学スタック交換に基づく大規模言語モデルの検討
- Authors: Ankit Satpute, Noah Giessing, Andre Greiner-Petter, Moritz Schubotz, Olaf Teschke, Akiko Aizawa, Bela Gipp,
- Abstract要約: 大規模言語モデル(LLM)は、様々な自然言語タスクにおいて例外的な機能を示した。
本稿では、複雑な数学的問題解決をナビゲートする上でのLLMの限界について考察する。
- 参考スコア(独自算出の注目度): 25.419977967846144
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated exceptional capabilities in various natural language tasks, often achieving performances that surpass those of humans. Despite these advancements, the domain of mathematics presents a distinctive challenge, primarily due to its specialized structure and the precision it demands. In this study, we adopted a two-step approach for investigating the proficiency of LLMs in answering mathematical questions. First, we employ the most effective LLMs, as identified by their performance on math question-answer benchmarks, to generate answers to 78 questions from the Math Stack Exchange (MSE). Second, a case analysis is conducted on the LLM that showed the highest performance, focusing on the quality and accuracy of its answers through manual evaluation. We found that GPT-4 performs best (nDCG of 0.48 and P@10 of 0.37) amongst existing LLMs fine-tuned for answering mathematics questions and outperforms the current best approach on ArqMATH3 Task1, considering P@10. Our Case analysis indicates that while the GPT-4 can generate relevant responses in certain instances, it does not consistently answer all questions accurately. This paper explores the current limitations of LLMs in navigating complex mathematical problem-solving. Through case analysis, we shed light on the gaps in LLM capabilities within mathematics, thereby setting the stage for future research and advancements in AI-driven mathematical reasoning. We make our code and findings publicly available for research: \url{https://github.com/gipplab/LLM-Investig-MathStackExchange}
- Abstract(参考訳): 大規模言語モデル(LLM)は、様々な自然言語タスクにおいて例外的な能力を示し、しばしば人間のものを上回るパフォーマンスを達成する。
これらの進歩にもかかわらず、数学の領域は、その特殊構造とそれが要求する精度のために、顕著な挑戦を示す。
本研究では,数理問題に対するLLMの習熟度を調べるための2段階のアプローチを採用した。
まず,最も効果的なLCMを用いて,Math Stack Exchange (MSE) から78問の回答を生成する。
第2に,手動評価による回答の質と正確性に着目し,最高性能を示したLCMの事例分析を行った。
その結果, GPT-4は, P@10を考慮したArqMATH3 Task1において, 数学的な疑問に答え, 現状の最良のアプローチよりも優れており, 既存のLLMの中で, 最良(0.48, P@10, 0.37)であることがわかった。
ケース分析では,GPT-4は特定の事例で関連性のある応答を生成できるが,全ての質問に対して常に正確に答えられるわけではない。
本稿では、複雑な数学的問題解決をナビゲートする上でのLLMの限界について考察する。
ケース分析を通じて、我々は数学におけるLLM能力のギャップに光を当て、AI駆動の数学的推論における将来の研究と進歩のステージを設定した。
コードと研究成果を公開しています。 \url{https://github.com/gipplab/LLM-Investig-MathStackExchange}
関連論文リスト
- HARDMath: A Benchmark Dataset for Challenging Problems in Applied Mathematics [1.5716764919736026]
本稿では,解析的近似技術を必要とする応用数学問題に挑戦するデータセットであるHARDMathを紹介する。
本フレームワークは,数値基底真理に対して検証された解を用いて,多数の問題を自動生成する。
HARDMath-miniは,366問題からなるサブサンプルテストセットであり,応用科学の文脈で定式化された40の単語問題に対して,オープンソースLLMとクローズドソースLLMの両方を評価する。
論文 参考訳(メタデータ) (2024-10-13T20:09:41Z) - MathHay: An Automated Benchmark for Long-Context Mathematical Reasoning in LLMs [61.74749961334557]
MathHayは、LLMの長文数学的推論能力を評価するために設計された自動ベンチマークである。
我々は,8つのトップパフォーマンスモデルの長文数学的推論能力を評価するために,MathHayの広範な実験を行った。
論文 参考訳(メタデータ) (2024-10-07T02:30:07Z) - AI-Assisted Generation of Difficult Math Questions [78.7547836422727]
現在の訓練は、数学的推論をコア能力として位置づけている。
多様で挑戦的な数学の質問には、控えめな需要がある。
本稿では,LLMの強みとHuman-in-the-loopアプローチを組み合わせた設計枠組みを提案する。
論文 参考訳(メタデータ) (2024-07-30T17:55:36Z) - SciEx: Benchmarking Large Language Models on Scientific Exams with Human Expert Grading and Automatic Grading [100.02175403852253]
LLM(Large Language Models)の一般的な用途は、科学的トピックに関するタスクを実行することである。
そこで本稿では,大学生のこのような課題に対する評価方法に着想を得たSciExを提案する。
我々は,新しいベンチマークを用いて,最先端のLLMの性能評価を行った。
論文 参考訳(メタデータ) (2024-06-14T21:52:21Z) - LLMs Are Not Intelligent Thinkers: Introducing Mathematical Topic Tree Benchmark for Comprehensive Evaluation of LLMs [8.89259409245068]
大規模言語モデル(LLM)は、数学的推論において印象的な能力を示す。
我々はMathematical Topics Tree (MaTT)ベンチマークを提示する。
最上級モデルであるGPT-4は,複数選択シナリオにおいて,わずか54%の精度を達成した。
論文 参考訳(メタデータ) (2024-06-07T18:21:26Z) - MathBench: Evaluating the Theory and Application Proficiency of LLMs with a Hierarchical Mathematics Benchmark [82.64129627675123]
MathBenchは、大規模言語モデルの数学的能力を厳格に評価する新しいベンチマークである。
MathBenchは幅広い数学の分野にまたがっており、理論的な理解と実践的な問題解決のスキルの両方を詳細に評価している。
論文 参考訳(メタデータ) (2024-05-20T17:52:29Z) - ChatGLM-Math: Improving Math Problem-Solving in Large Language Models with a Self-Critique Pipeline [42.61538071832468]
大規模言語モデル(LLM)は、人間の言語の優れた習得を示すが、数学的な問題解決を必要とする現実世界のアプリケーションでは依然として苦戦している。
LLMアライメントのフィードバック学習段階における課題に対処する自己批判パイプラインを調整します。
論文 参考訳(メタデータ) (2024-04-03T17:51:18Z) - MathVerse: Does Your Multi-modal LLM Truly See the Diagrams in Visual Math Problems? [99.0305256706604]
MLLMの公平かつ詳細な評価のために設計された全周視覚数学ベンチマークであるMathVerseを紹介する。
我々は,2,612の高品位・多目的数学問題を,公開情報源の図を用いて慎重に収集する。
このアプローチにより、MathVerseは、数学的推論のためのビジュアルダイアグラムを、どの程度のMLLMが真に理解できるかを包括的に評価することができる。
論文 参考訳(メタデータ) (2024-03-21T17:59:50Z) - GSM-Plus: A Comprehensive Benchmark for Evaluating the Robustness of LLMs as Mathematical Problem Solvers [68.77382332826167]
大規模言語モデル (LLM) は、様々な数学的推論ベンチマークで顕著な性能を達成している。
1つの必須かつ頻繁な証拠は、数学の質問がわずかに変更されたとき、LLMは誤って振る舞うことができることである。
このことは, LLMの数学推論能力の頑健性を評価するために, 幅広い質問のバリエーションを試すことによるものである。
論文 参考訳(メタデータ) (2024-02-29T15:26:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。