論文の概要: Revolutionising Distance Learning: A Comparative Study of Learning Progress with AI-Driven Tutoring
- arxiv url: http://arxiv.org/abs/2403.14642v1
- Date: Wed, 21 Feb 2024 12:15:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 03:52:54.840492
- Title: Revolutionising Distance Learning: A Comparative Study of Learning Progress with AI-Driven Tutoring
- Title(参考訳): 遠隔学習の革新: 学習の進歩とAI駆動学習の比較研究
- Authors: Moritz Möller, Gargi Nirmal, Dario Fabietti, Quintus Stierstorfer, Mark Zakhvatkin, Holger Sommerfeld, Sven Schütt,
- Abstract要約: 生成型AIが大学生の学習速度を大幅に向上させるという最初の証拠を提示する。
我々は,AIを活用した教師アシスタントSynteaの使用が,何百人もの遠隔学習学生の学習速度に影響を及ぼすかどうかを検証した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative AI is expected to have a vast, positive impact on education; however, at present, this potential has not yet been demonstrated at scale at university level. In this study, we present first evidence that generative AI can increase the speed of learning substantially in university students. We tested whether using the AI-powered teaching assistant Syntea affected the speed of learning of hundreds of distance learning students across more than 40 courses at the IU International University of Applied Sciences. Our analysis suggests that using Syntea reduced their study time substantially--by about 27\% on average--in the third month after the release of Syntea. Taken together, the magnitude of the effect and the scalability of the approach implicate generative AI as a key lever to significantly improve and accelerate learning by personalisation.
- Abstract(参考訳): 生成的AIは、教育に大きく、ポジティブな影響を与えることが期待されているが、現時点では、この可能性はまだ大学レベルでは実証されていない。
本研究では,生成型AIが大学生の学習速度を大幅に向上させるという最初の証拠を示す。
IU国際応用科学大学(IU)の40以上のコースで何百人もの遠隔学習学生の学習速度に影響を及ぼすかどうかを検討した。
分析の結果,Synteaの使用は,Synteaのリリース後3カ月目において,平均で約27倍の時間短縮が可能であることが示唆された。
同時に、このアプローチの効果の大きさとスケーラビリティは、生成AIをキーレバーとして含み、パーソナライゼーションによる学習を大幅に改善し、加速させる。
関連論文リスト
- Normalization and effective learning rates in reinforcement learning [52.59508428613934]
正規化層は近年,深層強化学習と連続学習文学においてルネッサンスを経験している。
正規化は、ネットワークパラメータのノルムにおける成長と効果的な学習速度における崩壊の間の等価性という、微妙だが重要な副作用をもたらすことを示す。
そこで本研究では,正規化・プロジェクトと呼ぶ単純な再パラメータ化により,学習率を明示的にする手法を提案する。
論文 参考訳(メタデータ) (2024-07-01T20:58:01Z) - Battling Botpoop using GenAI for Higher Education: A Study of a Retrieval Augmented Generation Chatbots Impact on Learning [0.0]
本研究で紹介されるLeodar教授は、カスタムメイドのSinglish- speak Retrieval Augmented Generation (RAG)である。
Leodar教授は、AI支援学習の未来を垣間見るとともに、パーソナライズされたガイダンス、24/7の可用性、コンテキストに関連する情報を提供している。
論文 参考訳(メタデータ) (2024-06-12T01:19:36Z) - AI-Tutoring in Software Engineering Education [0.7631288333466648]
我々は,GPT-3.5-TurboモデルをAI-TutorとしてAPASアルテミスに組み込むことで,探索的なケーススタディを行った。
この発見は、タイムリーなフィードバックやスケーラビリティといった利点を浮き彫りにしている。
しかし,AI-Tutor を用いた場合,一般的な応答や学習進行抑制に対する学生の懸念も明らかであった。
論文 参考訳(メタデータ) (2024-04-03T08:15:08Z) - Bringing Generative AI to Adaptive Learning in Education [58.690250000579496]
我々は、生成AIと適応学習の交差研究に光を当てた。
我々は、この連合が教育における次の段階の学習形式の発展に大きく貢献するだろうと論じている。
論文 参考訳(メタデータ) (2024-02-02T23:54:51Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
次世代の予測を用いた大規模トランスフォーマーのトレーニングは、AIの画期的な進歩を生み出した。
この生成AIアプローチは印象的な結果をもたらしたが、人間の監督に大きく依存している。
この人間の監視への強い依存は、AIイノベーションの進歩に重大なハードルをもたらす。
本稿では,高品質なトレーニングデータを自律的に生成することを目的とした,探索型AI(EAI)という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-13T07:03:39Z) - Experimental Evidence on Negative Impact of Generative AI on Scientific
Learning Outcomes [0.0]
AIを要約に使用することで、品質と出力の両方が大幅に改善された。
読書のトピックと優れた読み書きスキルに強い背景を持つ人は、最も有益であった。
論文 参考訳(メタデータ) (2023-09-23T21:59:40Z) - Implementing Learning Principles with a Personal AI Tutor: A Case Study [2.94944680995069]
本研究は,人間の学習過程をモデル化し,学術的性能を効果的に向上するパーソナルAIチューターの能力を示す。
プログラムにAIチューターを統合することで、教育者は、学習科学の原則に基づくパーソナライズされた学習体験を学生に提供することができる。
論文 参考訳(メタデータ) (2023-09-10T15:35:47Z) - Human Decision Makings on Curriculum Reinforcement Learning with
Difficulty Adjustment [52.07473934146584]
我々は,カリキュラム強化学習結果を,人的意思決定プロセスから学ぶことで,難しすぎず,難しすぎるような望ましいパフォーマンスレベルに導く。
本システムは非常に並列化可能であり,大規模強化学習アプリケーションの訓練が可能となる。
強化学習性能は、人間の所望の難易度と同期してうまく調整できることが示される。
論文 参考訳(メタデータ) (2022-08-04T23:53:51Z) - Toddler-Guidance Learning: Impacts of Critical Period on Multimodal AI
Agents [18.610737380842494]
我々は、AIエージェントの学習に臨界周期の概念を適用し、AIエージェントの仮想環境における臨界周期を調査する。
VECAツールキットを用いて幼児のような環境を構築し,幼児の学習特性を模倣する。
我々は、AIエージェントに対する臨界期間の影響を、ユニモーダル学習とマルチモーダル学習の両方において、どのように、いつ最も指導されるかという2つの視点から評価する。
論文 参考訳(メタデータ) (2022-01-12T10:57:40Z) - Persistent Reinforcement Learning via Subgoal Curricula [114.83989499740193]
VaPRL(Value-accelerated Persistent Reinforcement Learning)は、初期状態のカリキュラムを生成する。
VaPRLは、エピソード強化学習と比較して、3桁の精度で必要な介入を減らす。
論文 参考訳(メタデータ) (2021-07-27T16:39:45Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
パーソナライズ学習の目的は、学習者の強みに合致する効果的な知識獲得トラックをデザインし、目標を達成するために弱みをバイパスすることである。
近年、人工知能(AI)と機械学習(ML)の隆盛は、パーソナライズされた教育を強化するための新しい視点を広げています。
論文 参考訳(メタデータ) (2021-01-19T12:23:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。