論文の概要: AI-Educational Development Loop (AI-EDL): A Conceptual Framework to Bridge AI Capabilities with Classical Educational Theories
- arxiv url: http://arxiv.org/abs/2508.00970v1
- Date: Fri, 01 Aug 2025 15:44:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 20:32:48.6856
- Title: AI-Educational Development Loop (AI-EDL): A Conceptual Framework to Bridge AI Capabilities with Classical Educational Theories
- Title(参考訳): AI-Educational Development Loop (AI-EDL):古典的な教育理論でAI能力をブリッジする概念的フレームワーク
- Authors: Ning Yu, Jie Zhang, Sandeep Mitra, Rebecca Smith, Adam Rich,
- Abstract要約: 本研究では、古典的学習理論とAIを融合した理論駆動型フレームワークであるAI-Educational Development Loop(AI-EDL)を紹介する。
このフレームワークは透明性、自己統制型学習、教育的監視を強調している。
- 参考スコア(独自算出の注目度): 8.500617875591633
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study introduces the AI-Educational Development Loop (AI-EDL), a theory-driven framework that integrates classical learning theories with human-in-the-loop artificial intelligence (AI) to support reflective, iterative learning. Implemented in EduAlly, an AI-assisted platform for writing-intensive and feedback-sensitive tasks, the framework emphasizes transparency, self-regulated learning, and pedagogical oversight. A mixed-methods study was piloted at a comprehensive public university to evaluate alignment between AI-generated feedback, instructor evaluations, and student self-assessments; the impact of iterative revision on performance; and student perceptions of AI feedback. Quantitative results demonstrated statistically significant improvement between first and second attempts, with agreement between student self-evaluations and final instructor grades. Qualitative findings indicated students valued immediacy, specificity, and opportunities for growth that AI feedback provided. These findings validate the potential to enhance student learning outcomes through developmentally grounded, ethically aligned, and scalable AI feedback systems. The study concludes with implications for future interdisciplinary applications and refinement of AI-supported educational technologies.
- Abstract(参考訳): 本研究は,古典的学習理論とAIを統合する理論駆動型フレームワークであるAI-Educational Development Loop(AI-EDL)を導入し,リフレクティブで反復的な学習を支援する。
EduAllyで実装されているこのフレームワークは、筆記集約的でフィードバックに敏感なタスクのためのAI支援プラットフォームで、透明性、自己統制型学習、教育的監視を強調している。
総合的な公立大学で、AI生成フィードバック、インストラクター評価、学生の自己評価の整合性を評価するために、混合方法論の研究が試験された。
その結果,第1試行と第2試行の間に統計的に有意な改善がみられた。
質的な結果から、学生は即時性、特異性、AIフィードバックがもたらす成長の機会を重んじていた。
これらの知見は,発達的基盤,倫理的整合性,スケーラブルなAIフィードバックシステムを通じて,学生の学習成果を高める可能性を検証した。
この研究は、将来の学際的応用とAI支援の教育技術の洗練に意味をなしていると結論付けている。
関連論文リスト
- AI Literacy as a Key Driver of User Experience in AI-Powered Assessment: Insights from Socratic Mind [2.0272430076690027]
本研究では,学生のAIリテラシーと,それ以前のAI技術への露出が,ソクラティックマインドに対する認識をいかに形作るかを検討する。
コンピュータサイエンス・ビジネスコースの309人の学部生のデータを収集した。
論文 参考訳(メタデータ) (2025-07-29T10:11:24Z) - Evaluating AI-Powered Learning Assistants in Engineering Higher Education: Student Engagement, Ethical Challenges, and Policy Implications [0.2812395851874055]
本研究では、AIを活用した学習フレームワークである教育AIハブを、大規模なR1公立大学の学部・環境工学コースで活用することを評価する。
学生たちは、AIアシスタントの利便性と快適さを高く評価し、AIツールの使用の容易さを報告している。
多くの学生はAIの使用を倫理的に許容できると見なしたが、制度的な政策や潜在的な学術的不正に対する理解について不確実性を示した。
論文 参考訳(メタデータ) (2025-06-06T03:02:49Z) - When Models Know More Than They Can Explain: Quantifying Knowledge Transfer in Human-AI Collaboration [79.69935257008467]
我々は,人間とAIの知識伝達能力に関する概念的かつ実験的フレームワークである知識統合と伝達評価(KITE)を紹介する。
最初の大規模人間実験(N=118)を行い,その測定を行った。
2段階のセットアップでは、まずAIを使って問題解決戦略を思いつき、その後独立してソリューションを実装し、モデル説明が人間の理解に与える影響を分離します。
論文 参考訳(メタデータ) (2025-06-05T20:48:16Z) - Bridging the Gap: Integrating Ethics and Environmental Sustainability in AI Research and Practice [57.94036023167952]
我々は、AIの倫理的影響を研究するための努力は、その環境への影響を評価するものと相まって行われるべきであると論じる。
我々は,AI研究と実践にAI倫理と持続可能性を統合するためのベストプラクティスを提案する。
論文 参考訳(メタデータ) (2025-04-01T13:53:11Z) - Synergizing Self-Regulation and Artificial-Intelligence Literacy Towards Future Human-AI Integrative Learning [92.34299949916134]
自己制御学習(SRL)と人工知能(AI)リテラシーは、人間とAIの対話学習を成功させる上で重要な能力となっている。
本研究では,4つの学習グループを明らかにするクラスタリング手法を用いて,1,704人の中国人大学生のデータを分析した。
論文 参考訳(メタデータ) (2025-03-31T13:41:21Z) - Analyzing the Impact of AI Tools on Student Study Habits and Academic Performance [0.0]
この研究は、AIツールがパーソナライズされた学習、適応テスト調整をサポートし、リアルタイムの教室分析を提供する方法に焦点を当てている。
学生のフィードバックはこれらの特徴に対する強い支持を示し、GPAの増加とともに研究時間を大幅に短縮した。
これらのメリットにもかかわらず、AIへの過度依存や、AIと従来の教育方法を統合することの難しさといった課題も特定された。
論文 参考訳(メタデータ) (2024-12-03T04:51:57Z) - Comprehensive AI Assessment Framework: Enhancing Educational Evaluation with Ethical AI Integration [0.0]
本稿では、Perkins、Furze、Roe、MacVaughによるAIA(AIAS)の進化版である包括的AIアセスメントフレームワーク(CAIAF)について述べる。
CAIAFは厳格な倫理的ガイドラインを取り入れており、教育レベルと高度なAI能力に基づいて明確に区別されている。
このフレームワークは、より良い学習結果を保証するとともに、学術的完全性を維持し、AIの責任ある利用を促進する。
論文 参考訳(メタデータ) (2024-06-07T07:18:42Z) - From Algorithm Worship to the Art of Human Learning: Insights from 50-year journey of AI in Education [0.0]
人工知能(AI)を取り巻く現在の談話は、希望と理解の間に振動する。
本稿は、AIが教育において果たす役割の複雑さを考察し、教育者と警告された教育者が混ざったメッセージに対処するものである。
倫理的意味に関する懸念を背景に、AIが大規模にパーソナライゼーションを通じて学習を強化するという約束を探求する。
論文 参考訳(メタデータ) (2024-02-05T16:12:14Z) - Bringing Generative AI to Adaptive Learning in Education [58.690250000579496]
我々は、生成AIと適応学習の交差研究に光を当てた。
我々は、この連合が教育における次の段階の学習形式の発展に大きく貢献するだろうと論じている。
論文 参考訳(メタデータ) (2024-02-02T23:54:51Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。