論文の概要: Decomposed Inductive Procedure Learning: Learning Academic Tasks with Human-Like Data Efficiency
- arxiv url: http://arxiv.org/abs/2505.10422v1
- Date: Thu, 15 May 2025 15:39:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-16 22:29:06.390452
- Title: Decomposed Inductive Procedure Learning: Learning Academic Tasks with Human-Like Data Efficiency
- Title(参考訳): インダクティブ・プロシージャ・ラーニング:人間のようなデータ効率で学術課題を学習する
- Authors: Daniel Weitekamp, Christopher MacLellan, Erik Harpstead, Kenneth Koedinger,
- Abstract要約: 学習を複数の異なるメカニズムに分解することで、データの効率が大幅に向上することがわかった。
このギャップを埋めるためには,複数の専門的な学習機構を統合することが重要である。
- 参考スコア(独自算出の注目度): 1.9165956916475038
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human learning relies on specialization -- distinct cognitive mechanisms working together to enable rapid learning. In contrast, most modern neural networks rely on a single mechanism: gradient descent over an objective function. This raises the question: might human learners' relatively rapid learning from just tens of examples instead of tens of thousands in data-driven deep learning arise from our ability to use multiple specialized mechanisms of learning in combination? We investigate this question through an ablation analysis of inductive human learning simulations in online tutoring environments. Comparing reinforcement learning to a more data-efficient 3-mechanism symbolic rule induction approach, we find that decomposing learning into multiple distinct mechanisms significantly improves data efficiency, bringing it in line with human learning. Furthermore, we show that this decomposition has a greater impact on efficiency than the distinction between symbolic and subsymbolic learning alone. Efforts to align data-driven machine learning with human learning often overlook the stark difference in learning efficiency. Our findings suggest that integrating multiple specialized learning mechanisms may be key to bridging this gap.
- Abstract(参考訳): 人間の学習は専門化に依存します -- 迅速な学習を可能にするために協力して働く、異なる認知メカニズムです。
対照的に、現代のほとんどのニューラルネットワークは単一のメカニズムに依存している。
人間の学習者は、データ駆動型深層学習の数十万ではなく、ほんの数万の例から比較的高速に学習することができるだろうか?
本稿では,オンライン学習環境における帰納的人間学習シミュレーションのアブレーション分析を通して,この問題を考察する。
強化学習を、よりデータ効率のよい3つのメカニズムのシンボリック・ルール帰納アプローチと比較すると、学習を複数の異なるメカニズムに分解することで、データの効率が大幅に向上し、人間の学習と一致していることが分かる。
さらに, この分解は, 記号学習と準記号学習の区別よりも, 効率に強い影響を与えることを示した。
データ駆動機械学習と人間の学習を結びつける努力は、学習効率の重大な違いを見落としていることが多い。
このギャップを埋めるためには,複数の専門的な学習機構を統合することが重要である。
関連論文リスト
- RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
我々は,対話型模倣学習と類似するが,さらに実践的な仮定の下で,非政治強化学習によってパフォーマンスが向上できることを実証する。
提案手法は,ユーザ介入信号を用いた強化学習を報奨として利用する。
このことは、インタラクティブな模倣学習において介入する専門家がほぼ最適であるべきだという仮定を緩和し、アルゴリズムが潜在的に最適でない人間の専門家よりも改善される行動を学ぶことを可能にする。
論文 参考訳(メタデータ) (2023-11-21T21:05:21Z) - Breaking the Curse of Dimensionality in Deep Neural Networks by Learning
Invariant Representations [1.9580473532948401]
この論文は、これらのモデルのアーキテクチャとそれらが処理するデータ内の固有の構造との関係を研究することによって、ディープラーニングの理論的基礎を探求する。
ディープラーニングアルゴリズムの有効性を駆動するものは何か,いわゆる次元の呪いに勝てるのか,と問う。
本手法は,実験的な研究と物理に触発された玩具モデルを組み合わせることによって,深層学習に実証的なアプローチをとる。
論文 参考訳(メタデータ) (2023-10-24T19:50:41Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
本研究は,手順を段階的に学習する認知エージェントを提案する。
各サブステージで必要とされる認知機能と, エージェントが未解決の課題に, 新たな機能の追加がどう対処するかを示す。
結果は、このアプローチが複雑なタスクを段階的に解くことができることを示している。
論文 参考訳(メタデータ) (2023-04-30T22:51:31Z) - An Entropy-Based Model for Hierarchical Learning [3.1473798197405944]
実世界のデータセットに共通する特徴は、データドメインがマルチスケールであることである。
本稿では,このマルチスケールデータ構造を利用した学習モデルを提案する。
階層的な学習モデルは、人間の論理的かつ進歩的な学習メカニズムにインスパイアされている。
論文 参考訳(メタデータ) (2022-12-30T13:14:46Z) - Physics-Guided Hierarchical Reward Mechanism for Learning-Based Robotic
Grasping [10.424363966870775]
我々は,学習効率と学習に基づく自律的把握の一般化性を向上させるために,階層的リワード機構を備えた物理誘導型深層強化学習を開発した。
本手法は3本指MICOロボットアームを用いたロボット把握作業において有効である。
論文 参考訳(メタデータ) (2022-05-26T18:01:56Z) - What Matters in Learning from Offline Human Demonstrations for Robot
Manipulation [64.43440450794495]
ロボット操作のための6つのオフライン学習アルゴリズムについて広範な研究を行う。
我々の研究は、オフラインの人間のデータから学習する際の最も重要な課題を分析します。
人間のデータセットから学ぶ機会を強調します。
論文 参考訳(メタデータ) (2021-08-06T20:48:30Z) - Toward Understanding the Feature Learning Process of Self-supervised
Contrastive Learning [43.504548777955854]
本研究では,その特徴学習過程を解析することにより,ニューラルネットワークの特徴表現のコントラスト学習について検討する。
textbfReLUネットワークを用いたコントラスト学習は、適切な拡張が採用されれば、所望のスパース特徴を確実に学習できることを実証する。
論文 参考訳(メタデータ) (2021-05-31T16:42:09Z) - Ten Quick Tips for Deep Learning in Biology [116.78436313026478]
機械学習は、データのパターンを認識し、予測モデリングに使用するアルゴリズムの開発と応用に関係している。
ディープラーニングは、独自の機械学習のサブフィールドになっている。
生物学的研究の文脈において、ディープラーニングは高次元の生物学的データから新しい洞察を導き出すためにますます使われてきた。
論文 参考訳(メタデータ) (2021-05-29T21:02:44Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
人間パートナーを認識する能力は、パーソナライズされた長期的な人間とロボットの相互作用を構築するための重要な社会的スキルです。
ディープラーニングネットワークは最先端の結果を達成し,そのような課題に対処するための適切なツールであることが実証された。
1つの解決策は、ロボットに自己スーパービジョンで直接の感覚データから学習させることである。
論文 参考訳(メタデータ) (2021-03-16T13:50:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。