論文の概要: Harnessing the Computing Continuum across Personalized Healthcare, Maintenance and Inspection, and Farming 4.0
- arxiv url: http://arxiv.org/abs/2403.14650v1
- Date: Fri, 23 Feb 2024 09:20:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 03:52:54.827519
- Title: Harnessing the Computing Continuum across Personalized Healthcare, Maintenance and Inspection, and Farming 4.0
- Title(参考訳): パーソナライズされた医療・保守・検査・農業4.0におけるコンピューティング継続のハーネス
- Authors: Fatemeh Baghdadi, Davide Cirillo, Daniele Lezzi, Francesc Lordan, Fernando Vazquez, Eugenio Lomurno, Alberto Archetti, Danilo Ardagna, Matteo Matteucci,
- Abstract要約: AI-SPRINTプロジェクトは、コンピュータ連続体全体にわたるAIアプリケーションの開発と実装に焦点を当てている。
本稿では、パーソナライズされたヘルスケア、メンテナンスと検査、ファーミング4.0の応用について詳細に検討する。
提案するツールチェーンが、さまざまな課題に効果的に対処し、プロセスを洗練し、その関連性と複数のドメインへの影響について議論する。
- 参考スコア(独自算出の注目度): 37.03658877613283
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The AI-SPRINT project, launched in 2021 and funded by the European Commission, focuses on the development and implementation of AI applications across the computing continuum. This continuum ensures the coherent integration of computational resources and services from centralized data centers to edge devices, facilitating efficient and adaptive computation and application delivery. AI-SPRINT has achieved significant scientific advances, including streamlined processes, improved efficiency, and the ability to operate in real time, as evidenced by three practical use cases. This paper provides an in-depth examination of these applications -- Personalized Healthcare, Maintenance and Inspection, and Farming 4.0 -- highlighting their practical implementation and the objectives achieved with the integration of AI-SPRINT technologies. We analyze how the proposed toolchain effectively addresses a range of challenges and refines processes, discussing its relevance and impact in multiple domains. After a comprehensive overview of the main AI-SPRINT tools used in these scenarios, the paper summarizes of the findings and key lessons learned.
- Abstract(参考訳): 2021年に開始され、欧州委員会によって資金提供されたAI-SPRINTプロジェクトは、コンピュータ連続体におけるAIアプリケーションの開発と実装に焦点を当てている。
この継続により、中央集中型データセンタからエッジデバイスへの計算資源とサービスのコヒーレントな統合が保証され、効率的で適応的な計算とアプリケーション配信が容易になる。
AI-SPRINTは、3つの実用的なユースケースで証明されているように、合理化プロセス、効率の向上、リアルタイムに運用する能力など、科学的に重要な進歩を遂げている。
本稿では、これらの応用 -- パーソナライズされたヘルスケア、メンテナンス、検査、Farming 4.0 -- を詳細に検討し、その実践とAI-SPRINT技術の統合による目的を明らかにする。
提案するツールチェーンが、さまざまな課題に効果的に対処し、プロセスを洗練し、その関連性と複数のドメインへの影響について議論する。
これらのシナリオで使用される主要なAI-SPRINTツールの概要を概観した後、論文では、得られた発見と重要な教訓について要約する。
関連論文リスト
- The Enhancement of Software Delivery Performance through Enterprise DevSecOps and Generative Artificial Intelligence in Chinese Technology Firms [0.4532517021515834]
本研究では、DevSecOpsとGenerative Artificial Intelligenceの統合が、IT企業におけるソフトウェアデリバリのパフォーマンスに与える影響について検討する。
その結果、研究開発の効率が大幅に向上し、ソースコード管理が改善され、ソフトウェアの品質とセキュリティが向上した。
論文 参考訳(メタデータ) (2024-11-04T16:44:01Z) - The Role of Artificial Intelligence and Machine Learning in Software Testing [0.14896196009851972]
人工知能(AI)と機械学習(ML)は様々な産業に大きな影響を与えている。
ソフトウェア開発ライフサイクル(SDLC)の重要な部分であるソフトウェアテストは、ソフトウェア製品の品質と信頼性を保証する。
本稿では、既存の文献をレビューし、現在のツールや技術を分析し、ケーススタディを提示することで、ソフトウェアテストにおけるAIとMLの役割について考察する。
論文 参考訳(メタデータ) (2024-09-04T13:25:13Z) - Collaborative Evolving Strategy for Automatic Data-Centric Development [17.962373755266068]
本稿では,自動データ中心開発(AD2)タスクを紹介する。
ドメインエキスパートのようなタスクスケジューリングと実装能力を必要とする、その中核的な課題を概説している。
本稿では,Retrieval による協調的知恵強化進化という戦略を取り入れた自律エージェントを提案する。
論文 参考訳(メタデータ) (2024-07-26T12:16:47Z) - Revolutionizing System Reliability: The Role of AI in Predictive Maintenance Strategies [0.0]
この研究は、AI、特に機械学習とニューラルネットワークが、予測メンテナンス戦略を強化するためにどのように利用されているかを探求している。
この記事では、AIによる予測メンテナンスの実装の有効性と課題について、洞察を提供する。
論文 参考訳(メタデータ) (2024-04-20T19:31:05Z) - The Foundations of Computational Management: A Systematic Approach to
Task Automation for the Integration of Artificial Intelligence into Existing
Workflows [55.2480439325792]
本稿では,タスク自動化の体系的アプローチである計算管理を紹介する。
この記事では、ワークフロー内でAIを実装するプロセスを開始するための、ステップバイステップの手順を3つ紹介する。
論文 参考訳(メタデータ) (2024-02-07T01:45:14Z) - Integrated Sensing-Communication-Computation for Edge Artificial Intelligence [41.611639821262415]
統合センシング通信計算(I SCC)は,資源利用の向上に最重要課題である。
本稿では、エッジ学習タスクとエッジAI推論タスクをアプリケーション層と物理層の両方で行うための各種のISCCスキームについて述べる。
論文 参考訳(メタデータ) (2023-06-01T21:35:20Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
IT運用のための人工知能(AIOps)は、AIのパワーとIT運用プロセスが生成するビッグデータを組み合わせることを目的としている。
我々は、IT運用活動が発信する重要なデータの種類、分析における規模と課題、そしてどのように役立つかについて深く議論する。
主要なAIOpsタスクは、インシデント検出、障害予測、根本原因分析、自動アクションに分類します。
論文 参考訳(メタデータ) (2023-04-10T15:38:12Z) - Distributed intelligence on the Edge-to-Cloud Continuum: A systematic
literature review [62.997667081978825]
このレビューは、現在利用可能な機械学習とデータ分析のための最先端ライブラリとフレームワークに関する包括的なビジョンを提供することを目的としている。
現在利用可能なEdge-to-Cloud Continuumに関する実験的な研究のための、主要なシミュレーション、エミュレーション、デプロイメントシステム、テストベッドも調査されている。
論文 参考訳(メタデータ) (2022-04-29T08:06:05Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
本稿では,異種分散環境に適用可能なaiopsプラットフォームのシステム設計について述べる。
高頻度でメトリクスを収集し、エッジデバイス上で特定の異常検出アルゴリズムを直接実行することが可能である。
論文 参考訳(メタデータ) (2021-02-12T09:33:00Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
AIOps(Artificial Intelligence for IT Operations)は、マシンラーニング、ビッグデータ、ストリーミング分析、IT運用管理の交差点で発生する、新たな学際分野である。
AIOPSワークショップの主な目的は、アカデミアと産業界の両方の研究者が集まり、この分野での経験、成果、作業について発表することです。
論文 参考訳(メタデータ) (2021-01-15T10:43:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。