論文の概要: The Enhancement of Software Delivery Performance through Enterprise DevSecOps and Generative Artificial Intelligence in Chinese Technology Firms
- arxiv url: http://arxiv.org/abs/2411.02255v1
- Date: Mon, 04 Nov 2024 16:44:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:50:56.144886
- Title: The Enhancement of Software Delivery Performance through Enterprise DevSecOps and Generative Artificial Intelligence in Chinese Technology Firms
- Title(参考訳): 中国のIT企業におけるエンタープライズDevSecOpsと生成人工知能によるソフトウェアデリバリパフォーマンスの向上
- Authors: Jun Cui,
- Abstract要約: 本研究では、DevSecOpsとGenerative Artificial Intelligenceの統合が、IT企業におけるソフトウェアデリバリのパフォーマンスに与える影響について検討する。
その結果、研究開発の効率が大幅に向上し、ソースコード管理が改善され、ソフトウェアの品質とセキュリティが向上した。
- 参考スコア(独自算出の注目度): 0.4532517021515834
- License:
- Abstract: This study investigates the impact of integrating DevSecOps and Generative Artificial Intelligence (GAI) on software delivery performance within technology firms. Utilizing a qualitative research methodology, the research involved semi-structured interviews with industry practitioners and analysis of case studies from organizations that have successfully implemented these methodologies. The findings reveal significant enhancements in research and development (R&D) efficiency, improved source code management, and heightened software quality and security. The integration of GAI facilitated automation of coding tasks and predictive analytics, while DevSecOps ensured that security measures were embedded throughout the development lifecycle. Despite the promising results, the study identifies gaps related to the generalizability of the findings due to the limited sample size and the qualitative nature of the research. This paper contributes valuable insights into the practical implementation of DevSecOps and GAI, highlighting their potential to transform software delivery processes in technology firms. Future research directions include quantitative assessments of the impact on specific business outcomes and comparative studies across different industries.
- Abstract(参考訳): 本研究では、DevSecOpsとGenerative Artificial Intelligence(GAI)の統合が、IT企業におけるソフトウェアデリバリのパフォーマンスに与える影響について検討する。
質的研究手法を利用することで、業界実践者との半構造化インタビューと、これらの方法論をうまく実装した組織のケーススタディの分析を行った。
研究と開発(R&D)の効率向上、ソースコード管理の改善、ソフトウェアの品質とセキュリティの向上が明らかになった。
GAIの統合はコーディングタスクと予測分析の自動化を促進し、DevSecOpsは開発ライフサイクル全体にセキュリティ対策が組み込まれていることを保証した。
有望な結果にもかかわらず,本研究は,サンプルサイズが限定されたことと,研究の質的な性質に起因して,発見の一般化性に関連するギャップを明らかにする。
本稿では、DevSecOpsとGAIの実践的実装に関する貴重な洞察を提供し、IT企業におけるソフトウェアデリバリプロセスを変革する可能性を強調します。
今後の研究方針には、特定のビジネス成果への影響の定量的評価と、異なる産業における比較研究が含まれる。
関連論文リスト
- The Role of DevOps in Enhancing Enterprise Software Delivery Success through R&D Efficiency and Source Code Management [0.4532517021515834]
本研究は、ソフトウェアデリバリの成功のための研究開発効率の向上とソースコード管理(SCM)に焦点を当てる。
定性的な方法論を使用して、データをDevOpsを実装する大企業のケーススタディから収集した。
論文 参考訳(メタデータ) (2024-11-04T16:01:43Z) - Lingma SWE-GPT: An Open Development-Process-Centric Language Model for Automated Software Improvement [62.94719119451089]
Lingma SWE-GPTシリーズは、現実世界のコード提出活動から学び、シミュレーションする。
Lingma SWE-GPT 72BはGitHubの30.20%の問題を解決する。
論文 参考訳(メタデータ) (2024-11-01T14:27:16Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - RAG Does Not Work for Enterprises [0.0]
Retrieval-Augmented Generation (RAG)は、知識検索を取り入れた大規模言語モデル出力の精度と妥当性を向上させる。
企業におけるRAGの実装は、データセキュリティ、正確性、スケーラビリティ、統合に関する課題を引き起こす。
本稿では、エンタープライズRAGのユニークな要件について検討し、現在のアプローチと限界を調査し、セマンティック検索、ハイブリッドクエリ、最適化された検索の潜在的な進歩について考察する。
論文 参考訳(メタデータ) (2024-05-31T23:30:52Z) - SciOps: Achieving Productivity and Reliability in Data-Intensive Research [0.8414742293641504]
科学者たちは、実験や研究の目標を拡大するために、機器、自動化、協調ツールの進歩をますます活用している。
神経科学を含む様々な科学分野は、コラボレーション、インスピレーション、自動化を強化するための重要な技術を採用してきた。
厳密な科学的操作の原理を説明する5段階の能力成熟度モデルを導入する。
論文 参考訳(メタデータ) (2023-12-29T21:37:22Z) - Using Machine Learning To Identify Software Weaknesses From Software
Requirement Specifications [49.1574468325115]
本研究は、要求仕様からソフトウェア弱点を特定するための効率的な機械学習アルゴリズムを見つけることに焦点を当てる。
ProMISE_exp. Naive Bayes、サポートベクターマシン(SVM)、決定木、ニューラルネットワーク、畳み込みニューラルネットワーク(CNN)アルゴリズムをテストした。
論文 参考訳(メタデータ) (2023-08-10T13:19:10Z) - PerfDetectiveAI -- Performance Gap Analysis and Recommendation in
Software Applications [0.0]
本稿では,ソフトウェアアプリケーションにおける性能ギャップ分析と提案のための概念的フレームワークPerfDetectiveAIを紹介する。
現代の機械学習(ML)と人工知能(AI)技術は、PerfDetectiveAIでパフォーマンス測定を監視し、ソフトウェアアプリケーションにおけるパフォーマンス不足の領域を特定するために使用されている。
論文 参考訳(メタデータ) (2023-06-11T02:53:04Z) - AI for Agile development: a Meta-Analysis [0.0]
本研究では,人工知能とアジャイルソフトウェア開発方法論を統合することのメリットと課題について検討する。
このレビューは、特別な社会技術専門知識の必要性など、重要な課題を特定するのに役立った。
プロセスや実践者への影響をよりよく理解し、その実装に関連する間接的な課題に対処するためには、さらなる研究が必要である。
論文 参考訳(メタデータ) (2023-05-14T08:10:40Z) - Scaling up Search Engine Audits: Practical Insights for Algorithm
Auditing [68.8204255655161]
異なる地域に数百の仮想エージェントを配置した8つの検索エンジンの実験を行った。
複数のデータ収集にまたがる研究インフラの性能を実証する。
仮想エージェントは,アルゴリズムの性能を長時間にわたって監視するための,有望な場所である,と結論付けている。
論文 参考訳(メタデータ) (2021-06-10T15:49:58Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
AIOps(Artificial Intelligence for IT Operations)は、マシンラーニング、ビッグデータ、ストリーミング分析、IT運用管理の交差点で発生する、新たな学際分野である。
AIOPSワークショップの主な目的は、アカデミアと産業界の両方の研究者が集まり、この分野での経験、成果、作業について発表することです。
論文 参考訳(メタデータ) (2021-01-15T10:43:10Z) - AI-based Modeling and Data-driven Evaluation for Smart Manufacturing
Processes [56.65379135797867]
本稿では,半導体製造プロセスに関する有用な知見を得るための動的アルゴリズムを提案する。
本稿では,遺伝的アルゴリズムとニューラルネットワークを利用して,知的特徴選択アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-08-29T14:57:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。