Auditing Fairness under Unobserved Confounding
- URL: http://arxiv.org/abs/2403.14713v3
- Date: Mon, 09 Dec 2024 06:30:38 GMT
- Title: Auditing Fairness under Unobserved Confounding
- Authors: Yewon Byun, Dylan Sam, Michael Oberst, Zachary C. Lipton, Bryan Wilder,
- Abstract summary: We show that, surprisingly, one can still compute meaningful bounds on treatment rates for high-risk individuals.
We use the fact that in many real-world settings we have data from prior to any allocation to derive unbiased estimates of risk.
- Score: 56.61738581796362
- License:
- Abstract: Many definitions of fairness or inequity involve unobservable causal quantities that cannot be directly estimated without strong assumptions. For instance, it is particularly difficult to estimate notions of fairness that rely on hard-to-measure concepts such as risk (e.g., quantifying whether patients at the same risk level have equal probability of treatment, regardless of group membership). Such measurements of risk can be accurately obtained when no unobserved confounders have jointly influenced past decisions and outcomes. However, in the real world, this assumption rarely holds. In this paper, we show that, surprisingly, one can still compute meaningful bounds on treatment rates for high-risk individuals (i.e., conditional on their true, \textit{unobserved} negative outcome), even when entirely eliminating or relaxing the assumption that we observe all relevant risk factors used by decision makers. We use the fact that in many real-world settings (e.g., the release of a new treatment) we have data from prior to any allocation to derive unbiased estimates of risk. This result enables us to audit unfair outcomes of existing decision-making systems in a principled manner. We demonstrate the effectiveness of our framework with a real-world study of Paxlovid allocation, provably identifying that observed racial inequity cannot be explained by unobserved confounders of the same strength as important observed covariates.
Related papers
- Uncertainty Quantification in Stereo Matching [61.73532883992135]
We propose a new framework for stereo matching and its uncertainty quantification.
We adopt Bayes risk as a measure of uncertainty and estimate data and model uncertainty separately.
We apply our uncertainty method to improve prediction accuracy by selecting data points with small uncertainties.
arXiv Detail & Related papers (2024-12-24T23:28:20Z) - FairlyUncertain: A Comprehensive Benchmark of Uncertainty in Algorithmic Fairness [4.14360329494344]
We introduce FairlyUncertain, an axiomatic benchmark for evaluating uncertainty estimates in fairness.
Our benchmark posits that fair predictive uncertainty estimates should be consistent across learning pipelines and calibrated to observed randomness.
arXiv Detail & Related papers (2024-10-02T20:15:29Z) - The Unfairness of $\varepsilon$-Fairness [0.0]
We show that if the concept of $varepsilon$-fairness is employed, it can possibly lead to outcomes that are maximally unfair in the real-world context.
We illustrate our findings with two real-world examples: college admissions and credit risk assessment.
arXiv Detail & Related papers (2024-05-15T14:13:35Z) - What's the Harm? Sharp Bounds on the Fraction Negatively Affected by
Treatment [58.442274475425144]
We develop a robust inference algorithm that is efficient almost regardless of how and how fast these functions are learned.
We demonstrate our method in simulation studies and in a case study of career counseling for the unemployed.
arXiv Detail & Related papers (2022-05-20T17:36:33Z) - Treatment Effect Risk: Bounds and Inference [58.442274475425144]
Since the average treatment effect measures the change in social welfare, even if positive, there is a risk of negative effect on, say, some 10% of the population.
In this paper we consider how to nonetheless assess this important risk measure, formalized as the conditional value at risk (CVaR) of the ITE distribution.
Some bounds can also be interpreted as summarizing a complex CATE function into a single metric and are of interest independently of being a bound.
arXiv Detail & Related papers (2022-01-15T17:21:26Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - DEUP: Direct Epistemic Uncertainty Prediction [56.087230230128185]
Epistemic uncertainty is part of out-of-sample prediction error due to the lack of knowledge of the learner.
We propose a principled approach for directly estimating epistemic uncertainty by learning to predict generalization error and subtracting an estimate of aleatoric uncertainty.
arXiv Detail & Related papers (2021-02-16T23:50:35Z) - Feedback Effects in Repeat-Use Criminal Risk Assessments [0.0]
We show that risk can propagate over sequential decisions in ways that are not captured by one-shot tests.
Risk assessment tools operate in a highly complex and path-dependent process, fraught with historical inequity.
arXiv Detail & Related papers (2020-11-28T06:40:05Z) - Conformal Inference of Counterfactuals and Individual Treatment Effects [6.810856082577402]
We propose a conformal inference-based approach that can produce reliable interval estimates for counterfactuals and individual treatment effects.
Existing methods suffer from a significant coverage deficit even in simple models.
arXiv Detail & Related papers (2020-06-11T01:03:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.