論文の概要: Self-Supervised Backbone Framework for Diverse Agricultural Vision Tasks
- arxiv url: http://arxiv.org/abs/2403.15248v1
- Date: Fri, 22 Mar 2024 14:46:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 16:59:49.722597
- Title: Self-Supervised Backbone Framework for Diverse Agricultural Vision Tasks
- Title(参考訳): 多様な農業ビジョンタスクのための自己監督型バックボーンフレームワーク
- Authors: Sudhir Sornapudi, Rajhans Singh,
- Abstract要約: 農業におけるコンピュータビジョンは、農業をデータ駆動で正確で持続可能な産業に変えるために、ゲームを変える。
ディープラーニングは農業のビジョンに力を与えて、膨大な複雑な視覚データを分析するが、大きな注釈付きデータセットの可用性に大きく依存している。
本研究では,ResNet-50のバックボーンを実世界の農地画像の大規模データセット上に事前学習するための,コントラスト学習手法であるSimCLRを用いた軽量フレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.3683202928838613
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computer vision in agriculture is game-changing with its ability to transform farming into a data-driven, precise, and sustainable industry. Deep learning has empowered agriculture vision to analyze vast, complex visual data, but heavily rely on the availability of large annotated datasets. This remains a bottleneck as manual labeling is error-prone, time-consuming, and expensive. The lack of efficient labeling approaches inspired us to consider self-supervised learning as a paradigm shift, learning meaningful feature representations from raw agricultural image data. In this work, we explore how self-supervised representation learning unlocks the potential applicability to diverse agriculture vision tasks by eliminating the need for large-scale annotated datasets. We propose a lightweight framework utilizing SimCLR, a contrastive learning approach, to pre-train a ResNet-50 backbone on a large, unannotated dataset of real-world agriculture field images. Our experimental analysis and results indicate that the model learns robust features applicable to a broad range of downstream agriculture tasks discussed in the paper. Additionally, the reduced reliance on annotated data makes our approach more cost-effective and accessible, paving the way for broader adoption of computer vision in agriculture.
- Abstract(参考訳): 農業におけるコンピュータビジョンは、農業をデータ駆動で正確で持続可能な産業に変える能力によって、ゲームを変える。
ディープラーニングは農業のビジョンに力を与えて、膨大な複雑な視覚データを分析するが、大きな注釈付きデータセットの可用性に大きく依存している。
手動のラベリングはエラーを起こしやすく、時間がかかり、コストがかかるため、これはボトルネックのままである。
効率的なラベル付けアプローチの欠如は、自己指導型学習をパラダイムシフトと考え、生の農業画像データから有意義な特徴表現を学習するきっかけとなった。
本研究では,大規模アノテートデータセットの必要性を排除し,自己指導型表現学習が多様な農業ビジョンタスクに適用可能性を高める方法について検討する。
本研究では,ResNet-50のバックボーンを実世界の農地画像の大規模データセット上に事前学習するための,コントラスト学習手法であるSimCLRを用いた軽量フレームワークを提案する。
実験結果から,本モデルが下流農業の幅広い課題に適用可能なロバストな特徴を学習できることが示唆された。
さらに、注釈付きデータへの依存度を下げることで、我々のアプローチはより費用効率が高くアクセスしやすくなり、農業におけるコンピュータビジョンの広範な採用の道を開くことができる。
関連論文リスト
- Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Webスケールのビジュアルエンティティ認識は、クリーンで大規模なトレーニングデータがないため、重大な課題を呈している。
本稿では,ラベル検証,メタデータ生成,合理性説明に多モーダル大言語モデル(LLM)を活用することによって,そのようなデータセットをキュレートする新しい手法を提案する。
実験により、この自動キュレートされたデータに基づいてトレーニングされたモデルは、Webスケールの視覚的エンティティ認識タスクで最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2024-10-31T06:55:24Z) - Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
このモデルは, 植物の成長段階, 土壌条件の多様性, 照明条件の異なるランダム化フィールド配置をシミュレートすることができる。
我々のデータセットにはセマンティックラベル付き12,000の画像が含まれており、精密農業におけるコンピュータビジョンタスクの包括的なリソースを提供する。
論文 参考訳(メタデータ) (2024-03-27T08:42:47Z) - Data-Centric Digital Agriculture: A Perspective [23.566985362242498]
デジタル農業は、食料、食料、繊維、燃料の需要の増加に対応するために急速に発展している。
デジタル農業における機械学習の研究は、主にモデル中心のアプローチに焦点を当てている。
デジタル農業の可能性を完全に実現するためには、この分野におけるデータの役割を包括的に理解することが不可欠である。
論文 参考訳(メタデータ) (2023-12-06T11:38:26Z) - PhenoBench -- A Large Dataset and Benchmarks for Semantic Image Interpretation in the Agricultural Domain [29.395926321984565]
本稿では,実際の農業分野の意味論的解釈のための注釈付きデータセットとベンチマークを提案する。
UAVで記録したデータセットは、作物や雑草の高品質でピクセル単位のアノテーションを提供するだけでなく、作物の葉のインスタンスも同時に提供する。
異なるフィールドで構成された隠れテストセット上で、さまざまなタスクのベンチマークを提供する。
論文 参考訳(メタデータ) (2023-06-07T16:04:08Z) - Generative Adversarial Networks for Image Augmentation in Agriculture: A
Systematic Review [5.639656362091594]
2014年にコンピュータビジョンコミュニティで発明されたGAN(Generative Adversarial Network)は、優れたデータ表現を学習できる新しいアプローチスイートを提供する。
本稿では, GAN アーキテクチャの進化を概観するとともに, 農業への導入を体系的に検討する。
論文 参考訳(メタデータ) (2022-04-10T15:33:05Z) - An Ontological Knowledge Representation for Smart Agriculture [1.5484595752241122]
本稿では,スマートシステムのための農業的枠組みについて述べる。
知識グラフは、時間的農業データの分析と推論を行う格子として表現される。
論文 参考訳(メタデータ) (2021-12-21T14:58:04Z) - Curious Representation Learning for Embodied Intelligence [81.21764276106924]
近年,自己指導型表現学習は顕著な成功を収めている。
しかし、真にインテリジェントなエージェントを構築するためには、環境から学習できる表現学習アルゴリズムを構築する必要がある。
本稿では,強化学習方針と視覚的表現モデルを同時に学習する,好奇心をそそる表現学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-03T17:59:20Z) - Visual Distant Supervision for Scene Graph Generation [66.10579690929623]
シーングラフモデルは通常、大量のラベル付きデータを人間のアノテーションで教師付き学習する必要がある。
本研究では,人間ラベルデータを用いずにシーングラフモデルを訓練できる視覚関係学習の新しいパラダイムである視覚遠方監視を提案する。
包括的な実験結果から、我々の遠隔監視モデルは、弱い監督と半監督のベースラインよりも優れています。
論文 参考訳(メタデータ) (2021-03-29T06:35:24Z) - Laplacian Denoising Autoencoder [114.21219514831343]
本稿では,新しいタイプの自動符号化器を用いてデータ表現を学習することを提案する。
勾配領域における潜伏クリーンデータを破損させて雑音入力データを生成する。
いくつかのビジュアルベンチマークの実験では、提案されたアプローチでより良い表現が学べることが示されている。
論文 参考訳(メタデータ) (2020-03-30T16:52:39Z) - Agriculture-Vision: A Large Aerial Image Database for Agricultural
Pattern Analysis [110.30849704592592]
本稿では,農業パターンのセマンティックセグメンテーションのための大規模空中農地画像データセットであるGarmry-Visionを提案する。
各画像はRGBと近赤外線(NIR)チャンネルで構成され、解像度は1ピクセルあたり10cmである。
農家にとって最も重要な9種類のフィールド異常パターンに注釈を付ける。
論文 参考訳(メタデータ) (2020-01-05T20:19:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。