論文の概要: An Ontological Knowledge Representation for Smart Agriculture
- arxiv url: http://arxiv.org/abs/2112.12768v1
- Date: Tue, 21 Dec 2021 14:58:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-25 05:51:51.616480
- Title: An Ontological Knowledge Representation for Smart Agriculture
- Title(参考訳): スマート農業におけるオントロジー的知識表現
- Authors: Bikram Pratim Bhuyan, Ravi Tomar, Maanak Gupta and Amar Ramdane-Cherif
- Abstract要約: 本稿では,スマートシステムのための農業的枠組みについて述べる。
知識グラフは、時間的農業データの分析と推論を行う格子として表現される。
- 参考スコア(独自算出の注目度): 1.5484595752241122
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In order to provide the agricultural industry with the infrastructure it
needs to take advantage of advanced technology, such as big data, the cloud,
and the internet of things (IoT); smart farming is a management concept that
focuses on providing the infrastructure necessary to track, monitor, automate,
and analyse operations. To represent the knowledge extracted from the primary
data collected is of utmost importance. An agricultural ontology framework for
smart agriculture systems is presented in this study. The knowledge graph is
represented as a lattice to capture and perform reasoning on spatio-temporal
agricultural data.
- Abstract(参考訳): 農業産業にインフラを提供するには、ビッグデータやクラウド、モノのインターネット(IoT)といった高度な技術を活用する必要がある。
収集した一次データから抽出した知識を表現することは最も重要である。
本研究は,スマート農業システムのための農業オントロジーの枠組みについて述べる。
ナレッジグラフは、時空間的農業データの推論をキャプチャし実行するための格子として表現される。
関連論文リスト
- LoRa Communication for Agriculture 4.0: Opportunities, Challenges, and Future Directions [40.08908132533476]
スマート農業の新興分野は、IoT(Internet of Things)を活用して農業プラクティスに革命をもたらす。
本稿では,農業用IoTシステムにおける長距離無線通信の鍵となるLong Range(LoRa)技術の転換可能性について検討する。
論文 参考訳(メタデータ) (2024-09-17T13:55:44Z) - Application of Machine Learning in Agriculture: Recent Trends and Future Research Avenues [6.0460261046732455]
食品生産は重要な世界的関心事であり、人工知能(AI)による農業革命の可能性はほとんど解明されていない。
本稿では,農業における機械学習(ML)の適用に焦点をあてた総合的なレビューを行い,農業実践におけるその変革的ポテンシャルと効率向上を探求する。
論文 参考訳(メタデータ) (2024-05-23T17:53:31Z) - Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
このモデルは, 植物の成長段階, 土壌条件の多様性, 照明条件の異なるランダム化フィールド配置をシミュレートすることができる。
我々のデータセットにはセマンティックラベル付き12,000の画像が含まれており、精密農業におけるコンピュータビジョンタスクの包括的なリソースを提供する。
論文 参考訳(メタデータ) (2024-03-27T08:42:47Z) - Self-Supervised Backbone Framework for Diverse Agricultural Vision Tasks [0.3683202928838613]
農業におけるコンピュータビジョンは、農業をデータ駆動で正確で持続可能な産業に変えるために、ゲームを変える。
ディープラーニングは農業のビジョンに力を与えて、膨大な複雑な視覚データを分析するが、大きな注釈付きデータセットの可用性に大きく依存している。
本研究では,ResNet-50のバックボーンを実世界の農地画像の大規模データセット上に事前学習するための,コントラスト学習手法であるSimCLRを用いた軽量フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-22T14:46:51Z) - Data-Centric Digital Agriculture: A Perspective [23.566985362242498]
デジタル農業は、食料、食料、繊維、燃料の需要の増加に対応するために急速に発展している。
デジタル農業における機械学習の研究は、主にモデル中心のアプローチに焦点を当てている。
デジタル農業の可能性を完全に実現するためには、この分野におけるデータの役割を包括的に理解することが不可欠である。
論文 参考訳(メタデータ) (2023-12-06T11:38:26Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
人工知能(Artificial General Intelligence, AGI)は、人間の認知能力でタスクを理解し、学習し、実行することができる能力を持つ。
本研究は,モノのインターネットにおけるAGIの実現に向けた機会と課題を探究する。
AGIに注入されたIoTの応用スペクトルは広く、スマートグリッド、住宅環境、製造、輸送から環境モニタリング、農業、医療、教育まで幅広い領域をカバーしている。
論文 参考訳(メタデータ) (2023-09-14T05:43:36Z) - Empowering Agrifood System with Artificial Intelligence: A Survey of the Progress, Challenges and Opportunities [86.89427012495457]
我々は、AI技術がアグリフードシステムをどう変え、現代のアグリフード産業に貢献するかをレビューする。
本稿では,農業,畜産,漁業において,アグリフードシステムにおけるAI手法の進歩について概説する。
我々は、AIで現代のアグリフードシステムを変革するための潜在的な課題と有望な研究機会を強調します。
論文 参考訳(メタデータ) (2023-05-03T05:16:54Z) - OG-SGG: Ontology-Guided Scene Graph Generation. A Case Study in Transfer
Learning for Telepresence Robotics [124.08684545010664]
画像からのシーングラフ生成は、ロボット工学のようなアプリケーションに非常に関心を持つタスクである。
オントロジー誘導シーングラフ生成(OG-SGG)と呼ばれるフレームワークの初期近似を提案する。
論文 参考訳(メタデータ) (2022-02-21T13:23:15Z) - Learning from Data to Optimize Control in Precision Farming [77.34726150561087]
特集は、統計的推論、機械学習、精密農業のための最適制御における最新の発展を示す。
衛星の位置決めとナビゲーションとそれに続くInternet-of-Thingsは、リアルタイムで農業プロセスの最適化に使用できる膨大な情報を生成する。
論文 参考訳(メタデータ) (2020-07-07T12:44:17Z) - Data Warehouse and Decision Support on Integrated Crop Big Data [0.0]
我々は大陸レベルの農業データウェアハウス(ADW)を設計・実装した。
ADWは,(1)フレキシブルスキーマ,(2)農業用マルチデータセットからのデータ統合,(3)データサイエンスとビジネス用インテリジェントサポート,(4)ハイパフォーマンス,(5)高ストレージ,(6)セキュリティ,(7)ガバナンスと監視,(8)一貫性,可用性,パーティション耐性,(9)クラウド互換性によって特徴付けられる。
論文 参考訳(メタデータ) (2020-03-10T00:10:22Z) - Agriculture-Vision: A Large Aerial Image Database for Agricultural
Pattern Analysis [110.30849704592592]
本稿では,農業パターンのセマンティックセグメンテーションのための大規模空中農地画像データセットであるGarmry-Visionを提案する。
各画像はRGBと近赤外線(NIR)チャンネルで構成され、解像度は1ピクセルあたり10cmである。
農家にとって最も重要な9種類のフィールド異常パターンに注釈を付ける。
論文 参考訳(メタデータ) (2020-01-05T20:19:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。