論文の概要: Imagination Augmented Generation: Learning to Imagine Richer Context for Question Answering over Large Language Models
- arxiv url: http://arxiv.org/abs/2403.15268v1
- Date: Fri, 22 Mar 2024 15:06:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 16:59:49.702416
- Title: Imagination Augmented Generation: Learning to Imagine Richer Context for Question Answering over Large Language Models
- Title(参考訳): Imagination Augmented Generation:大規模言語モデルに対する質問応答のためのよりリッチなコンテキストを想像する学習
- Authors: Huanxuan Liao, Shizhu He, Yao Xu, Yuanzhe Zhang, Kang Liu, Shengping Liu, Jun Zhao,
- Abstract要約: 知識強化フレームワークImagination-Augmented-Generation(IAG)を提案する。
IAGは人間の能力をシミュレートし、知識不足を補うと同時に、外部リソースに頼ることなく、想像のみで質問に答える。
3つのデータセットの実験結果から、IMcQAはオープンドメインとクローズドブックの両方で大きな優位性を示すことが示された。
- 参考スコア(独自算出の注目度): 30.409828862670764
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-Augmented-Generation and Gener-ation-Augmented-Generation have been proposed to enhance the knowledge required for question answering over Large Language Models (LLMs). However, the former depends on external resources, and both require incorporating the explicit documents into the context, which results in longer contexts that lead to more resource consumption. Recent works indicate that LLMs have modeled rich knowledge, albeit not effectively triggered or activated. Inspired by this, we propose a novel knowledge-augmented framework, Imagination-Augmented-Generation (IAG), which simulates the human capacity to compensate for knowledge deficits while answering questions solely through imagination, without relying on external resources. Guided by IAG, we propose an imagine richer context method for question answering (IMcQA), which obtains richer context through the following two modules: explicit imagination by generating a short dummy document with long context compress and implicit imagination with HyperNetwork for generating adapter weights. Experimental results on three datasets demonstrate that IMcQA exhibits significant advantages in both open-domain and closed-book settings, as well as in both in-distribution performance and out-of-distribution generalizations. Our code will be available at https://github.com/Xnhyacinth/IAG.
- Abstract(参考訳): 大規模言語モデル(LLM)上での質問応答に必要な知識を高めるために,検索・拡張・ジェネレーションとジェネレーション・拡張・ジェネレーションを提案する。
しかし、前者は外部リソースに依存しており、どちらも明示的な文書をコンテキストに組み込む必要があり、結果としてより長いコンテキストがリソース消費につながる。
最近の研究は、LLMが豊かな知識をモデル化したことを示している。
そこで本研究では,知識不足を補うための人的能力を模擬する新たな知識増強フレームワークImagination-Augmented-Generation(IAG)を提案する。
IAG が指導する質問応答のためのよりリッチな文脈解法 (IMcQA) を提案する。この手法は,長文圧縮による短いダミー文書の生成と,適応重みを生成するHyperNetwork による暗黙的な想像力によって,以下の2つのモジュールを通してよりリッチな文脈を求める。
3つのデータセットの実験結果から、IMcQAは、オープンドメインとクローズドブックの両方で大きな利点を示し、また、分布内性能と分布外一般化の両方で有益であることが示された。
私たちのコードはhttps://github.com/Xnhyacinth/IAG.comで公開されます。
関連論文リスト
- Oreo: A Plug-in Context Reconstructor to Enhance Retrieval-Augmented Generation [28.568010424711563]
大規模言語モデル(LLM)は、パラメトリックな知識が限られ、ドメイン固有の専門知識が欠如しているため、幻覚に弱いままである。
Retrieval-Augmented Generation (RAG)は、LLMの知識基盤を強化するために外部文書検索を組み込むことによって、この問題に対処する。
発電機に供給する前に外部の知識ソースを洗練するためのコンパクトで効率的でプラガブルなモジュールを導入する。
論文 参考訳(メタデータ) (2025-02-18T16:38:39Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
本稿では,KG(Amar)フレームワーク上での適応型マルチアスペクト検索手法を提案する。
この方法は、エンティティ、リレーション、サブグラフを含む知識を検索し、検索した各テキストを即時埋め込みに変換する。
提案手法は2つの共通データセットに対して最先端の性能を達成した。
論文 参考訳(メタデータ) (2024-12-24T16:38:04Z) - mR$^2$AG: Multimodal Retrieval-Reflection-Augmented Generation for Knowledge-Based VQA [78.45521005703958]
マルチモーダル検索拡張生成(mRAG)はMLLMに包括的で最新の知識を提供するために自然に導入されている。
我々は、適応的検索と有用な情報ローカライゼーションを実現する textbfRetrieval-textbfReftextbfAugmented textbfGeneration (mR$2$AG) という新しいフレームワークを提案する。
mR$2$AG は INFOSEEK と Encyclopedic-VQA の最先端MLLM を著しく上回る
論文 参考訳(メタデータ) (2024-11-22T16:15:50Z) - REAR: A Relevance-Aware Retrieval-Augmented Framework for Open-Domain Question Answering [115.72130322143275]
REAR(Relevance-Aware Retrieval-augmented approach for open-domain Question answering, QA)
我々は,特殊な設計のアセスメントモジュールを組み込むことで,LLMベースのRAGシステムのための新しいアーキテクチャを開発する。
オープンドメインの4つのQAタスクの実験では、REARは以前の競争力のあるRAGアプローチよりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-02-27T13:22:51Z) - Context Matters: Pushing the Boundaries of Open-Ended Answer Generation with Graph-Structured Knowledge Context [4.1229332722825]
本稿では,知識グラフに基づく拡張と合わせて,グラフ駆動型コンテキスト検索を組み合わせた新しいフレームワークを提案する。
我々は,様々なパラメータサイズを持つ大規模言語モデル(LLM)の実験を行い,知識の基盤化能力を評価し,オープンな質問に対する回答の事実的正確性を決定する。
われわれの方法であるGraphContextGenは、テキストベースの検索システムよりも一貫して優れており、その堅牢性と多くのユースケースへの適応性を実証している。
論文 参考訳(メタデータ) (2024-01-23T11:25:34Z) - Contextual Knowledge Pursuit for Faithful Visual Synthesis [33.191847768674826]
大きな言語モデル(LLM)では、幻覚を減らすための一般的な戦略は、外部データベースから事実知識を取得することである。
本稿では,外部知識とパラメトリック知識の相補的強みを利用して,生成元が信頼できる視覚コンテンツを生成できるようにするフレームワークであるコンパラメトリック知識探索法(CKPT)を提案する。
論文 参考訳(メタデータ) (2023-11-29T18:51:46Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
大きな言語モデル(LLM)は印象的な生成能力を示すが、内部知識に依存すると幻覚に悩まされる。
検索拡張LDMは、外部知識においてLLMを基盤とする潜在的な解決策として出現している。
論文 参考訳(メタデータ) (2023-10-31T04:37:57Z) - Active Retrieval Augmented Generation [123.68874416084499]
外部知識資源から情報を取得することで、大きな言語モデル(LM)を拡張することは、有望な解決策である。
ほとんどの既存の検索拡張LMは、入力に基づいて一度だけ情報を検索する検索と生成のセットアップを採用している。
本稿では,将来的な内容を予測するために,文の予測を反復的に利用する汎用手法であるフォワード・フォワード・アクティブ・レトリヴァル・ジェネレーション・ジェネレーション(FLARE)を提案する。
論文 参考訳(メタデータ) (2023-05-11T17:13:40Z) - Generate rather than Retrieve: Large Language Models are Strong Context
Generators [74.87021992611672]
本稿では,文書検索を大規模言語モデル生成器に置き換えることで,知識集約型タスクを解く新しい視点を提案する。
我々は,提案手法をgenRead (genRead) と呼び,まず大きな言語モデルに対して,与えられた質問に基づいて文脈文書を生成し,次に生成された文書を読み出して最終回答を生成する。
論文 参考訳(メタデータ) (2022-09-21T01:30:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。