論文の概要: Large Language Model for Mental Health: A Systematic Review
- arxiv url: http://arxiv.org/abs/2403.15401v2
- Date: Wed, 29 May 2024 21:55:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 20:35:08.132108
- Title: Large Language Model for Mental Health: A Systematic Review
- Title(参考訳): メンタルヘルスのための大規模言語モデル:システムレビュー
- Authors: Zhijun Guo, Alvina Lai, Johan Hilge Thygesen, Joseph Farrington, Thomas Keen, Kezhi Li,
- Abstract要約: 大規模言語モデル(LLM)は、デジタルヘルスの潜在的な応用に対して大きな注目を集めている。
この体系的なレビューは、早期スクリーニング、デジタル介入、臨床応用におけるその強みと限界に焦点を当てている。
- 参考スコア(独自算出の注目度): 2.9429776664692526
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have attracted significant attention for potential applications in digital health, while their application in mental health is subject to ongoing debate. This systematic review aims to evaluate the usage of LLMs in mental health, focusing on their strengths and limitations in early screening, digital interventions, and clinical applications. Adhering to PRISMA guidelines, we searched PubMed, IEEE Xplore, Scopus, and the JMIR using keywords: 'mental health OR mental illness OR mental disorder OR psychiatry' AND 'large language models'. We included articles published between January 1, 2017, and December 31, 2023, excluding non-English articles. 30 articles were evaluated, which included research on mental illness and suicidal ideation detection through text (n=12), usage of LLMs for mental health conversational agents (CAs) (n=5), and other applications and evaluations of LLMs in mental health (n=13). LLMs exhibit substantial effectiveness in detecting mental health issues and providing accessible, de-stigmatized eHealth services. However, the current risks associated with the clinical use might surpass their benefits. The study identifies several significant issues: the lack of multilingual datasets annotated by experts, concerns about the accuracy and reliability of the content generated, challenges in interpretability due to the 'black box' nature of LLMs, and persistent ethical dilemmas. These include the lack of a clear ethical framework, concerns about data privacy, and the potential for over-reliance on LLMs by both therapists and patients, which could compromise traditional medical practice. Despite these issues, the rapid development of LLMs underscores their potential as new clinical aids, emphasizing the need for continued research and development in this area.
- Abstract(参考訳): 大規模言語モデル(LLM)は、デジタルヘルスの潜在的な応用に対して大きな注目を集めている一方、メンタルヘルスへの応用は、現在進行中の議論の対象となっている。
本研究は, 早期スクリーニング, デジタル介入, 臨床応用の強さと限界に着目し, 精神保健におけるLSMの使用状況を評価することを目的とする。
PRISMAガイドラインに従って, PubMed, IEEE Xplore, Scopus, JMIRをキーワードとして検索した。
非英語記事を除く2017年1月1日から2023年12月31日までの記事を掲載した。
30項目が評価され, テキストによる精神疾患と自殺的思考検出(n=12), メンタルヘルス会話エージェント(n=5), その他のメンタルヘルスにおけるLSMの応用と評価(n=13。
LLMは、メンタルヘルスの問題を検知し、アクセス可能で非スティグマタイズされたeヘルスサービスを提供する上で、かなりの効果を発揮する。
しかし、現在の臨床使用に伴うリスクは、彼らの利益を上回る可能性がある。
この研究は、専門家によって注釈付けされた多言語データセットの欠如、生成されたコンテンツの正確性と信頼性に関する懸念、LCMの「ブラックボックス」の性質による解釈可能性の課題、永続的な倫理的ジレンマなど、いくつかの重要な問題を明らかにしている。
これには、明確な倫理的枠組みの欠如、データのプライバシーへの懸念、セラピストと患者の双方によるLSMへの過度な信頼の可能性が含まれており、従来の医療行為を損なう可能性がある。
これらの問題にもかかわらず、LSMの急速な開発は、新たな臨床支援としての可能性を強調し、この分野における継続的な研究と開発の必要性を強調している。
関連論文リスト
- Persuasion with Large Language Models: a Survey [49.86930318312291]
大規模言語モデル (LLM) は説得力のあるコミュニケーションに新たな破壊的可能性を生み出している。
政治、マーケティング、公衆衛生、電子商取引、慈善事業などの分野では、LLMシステムズは既に人間レベルや超人的説得力を達成している。
LLMをベースとした説得の現在と将来の可能性は、倫理的・社会的リスクを著しく引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2024-11-11T10:05:52Z) - Leveraging LLMs for Translating and Classifying Mental Health Data [3.0382033111760585]
本研究は,ギリシャ語におけるうつ病の重症度の自動検出に焦点をあてる。
以上の結果から,GPT3.5-turboは英語における抑うつの重症度を同定するにはあまり成功せず,ギリシャ語でも多彩な性能を示した。
論文 参考訳(メタデータ) (2024-10-16T19:30:11Z) - CliMedBench: A Large-Scale Chinese Benchmark for Evaluating Medical Large Language Models in Clinical Scenarios [50.032101237019205]
CliMedBenchは、14のエキスパートによるコア臨床シナリオを備えた総合的なベンチマークである。
このベンチマークの信頼性はいくつかの点で確認されている。
論文 参考訳(メタデータ) (2024-10-04T15:15:36Z) - Severity Prediction in Mental Health: LLM-based Creation, Analysis,
Evaluation of a Novel Multilingual Dataset [3.4146360486107987]
大規模言語モデル(LLM)は、メンタルヘルス支援システムを含む様々な医療分野に統合されつつある。
本稿では、広く使われているメンタルヘルスデータセットを英語から6言語に翻訳した新しい多言語適応法を提案する。
このデータセットは、精神状態を検出し、複数の言語にわたる重症度を評価する上で、LLMのパフォーマンスを総合的に評価することを可能にする。
論文 参考訳(メタデータ) (2024-09-25T22:14:34Z) - LLM Questionnaire Completion for Automatic Psychiatric Assessment [49.1574468325115]
大規模言語モデル(LLM)を用いて、非構造的心理面接を、様々な精神科領域と人格領域にまたがる構造化された質問票に変換する。
得られた回答は、うつ病の標準化された精神医学的指標(PHQ-8)とPTSD(PCL-C)の予測に使用される特徴として符号化される。
論文 参考訳(メタデータ) (2024-06-09T09:03:11Z) - Large Language Models in Mental Health Care: a Scoping Review [28.635427491110484]
メンタルヘルスにおける大規模言語モデル(LLM)の統合は、新たな分野である。
アプリケーションの結果を体系的にレビューし、臨床設定の利点と限界を明確にすることが必要である。
本総説は、精神医療におけるLSMの使用について、その効果、課題、将来的な応用の可能性について、総合的に概観することを目的としている。
論文 参考訳(メタデータ) (2024-01-01T17:35:52Z) - Challenges of Large Language Models for Mental Health Counseling [4.604003661048267]
世界のメンタルヘルス危機は、精神疾患の急速な増加、限られた資源、治療を求める社会的便宜によって悪化している。
メンタルヘルス領域における大規模言語モデル(LLM)の適用は、提供された情報の正確性、有効性、信頼性に関する懸念を提起する。
本稿では, モデル幻覚, 解釈可能性, バイアス, プライバシ, 臨床効果など, 心理カウンセリングのためのLSMの開発に伴う課題について検討する。
論文 参考訳(メタデータ) (2023-11-23T08:56:41Z) - A Survey of Large Language Models in Medicine: Progress, Application, and Challenge [85.09998659355038]
大規模言語モデル (LLM) は、人間の言語を理解し、生成する能力のために大きな注目を集めている。
本総説は,医学におけるLSMの開発と展開について概説することを目的としている。
論文 参考訳(メタデータ) (2023-11-09T02:55:58Z) - Benefits and Harms of Large Language Models in Digital Mental Health [40.02859683420844]
大型言語モデル (LLMs) は、デジタルメンタルヘルスを未知の領域に導くことを約束している。
本稿では、デジタルメンタルヘルスツールの設計、開発、実装においてLLMがもたらす可能性とリスクについて、現代の展望を示す。
論文 参考訳(メタデータ) (2023-11-07T14:11:10Z) - Towards Mitigating Hallucination in Large Language Models via
Self-Reflection [63.2543947174318]
大規模言語モデル(LLM)は、質問応答(QA)タスクを含む生成的および知識集約的なタスクを約束している。
本稿では,広範に採用されているLCMとデータセットを用いた医療再生QAシステムにおける幻覚現象を解析する。
論文 参考訳(メタデータ) (2023-10-10T03:05:44Z) - Redefining Digital Health Interfaces with Large Language Models [69.02059202720073]
大規模言語モデル(LLM)は、複雑な情報を処理できる汎用モデルとして登場した。
LLMが臨床医とデジタル技術との新たなインターフェースを提供する方法を示す。
自動機械学習を用いた新しい予後ツールを開発した。
論文 参考訳(メタデータ) (2023-10-05T14:18:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。