論文の概要: When LLM-based Code Generation Meets the Software Development Process
- arxiv url: http://arxiv.org/abs/2403.15852v1
- Date: Sat, 23 Mar 2024 14:04:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 20:42:03.586518
- Title: When LLM-based Code Generation Meets the Software Development Process
- Title(参考訳): LLMベースのコード生成がソフトウェア開発プロセスと出会うとき
- Authors: Feng Lin, Dong Jae Kim, Tse-Husn, Chen,
- Abstract要約: 本稿では,ソフトウェア工学の確立した実践に触発されたコード生成フレームワークであるLCGを紹介する。
LLMエージェントは、LCGWaterfall、LCGTDD、LCGScrumといった様々なソフトウェアプロセスモデルをエミュレートする。
我々は,HumanEval,HumanEval-ET,MBPP,MBPP-ETの4つのコード生成ベンチマークでLCGを評価した。
- 参考スコア(独自算出の注目度): 50.82665351100067
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Software process models play a pivotal role in fostering collaboration and communication within software teams, enabling them to tackle intricate development tasks effectively. This paper introduces LCG, a code generation framework inspired by established software engineering practices. LCG leverages multiple Large Language Model (LLM) agents to emulate various software process models, namely LCGWaterfall, LCGTDD, and LCGScrum. Each model assigns LLM agents specific roles such as requirement engineer, architect, developer, tester, and scrum master, mirroring typical development activities and communication patterns. Through collaborative efforts utilizing chain-of-thought and prompt composition techniques, the agents continuously refine themselves to enhance code quality. Utilizing GPT3.5 as the underlying LLM and baseline (GPT), we evaluate LCG across four code generation benchmarks: HumanEval, HumanEval-ET, MBPP, and MBPP-ET. Results indicate LCGScrum outperforms other models, achieving Pass@1 scores of 75.2, 65.5, 82.5, and 56.7 in HumanEval, HumanEval-ET, MBPP, and MBPP-ET, respectively - an average 15% improvement over GPT. Analysis reveals distinct impacts of development activities on generated code, with design and code reviews contributing to enhanced exception handling, while design, testing, and code reviews mitigate code smells. Furthermore, temperature values exhibit negligible influence on Pass@1 across all models. However, variations in Pass@1 are notable for different GPT3.5 model versions, ranging from 5 to over 60 in HumanEval, highlighting the stability of LCG across model versions. This stability underscores the importance of adopting software process models to bolster the quality and consistency of LLM-generated code.
- Abstract(参考訳): ソフトウェアプロセスモデルは、ソフトウェアチーム内のコラボレーションとコミュニケーションを促進する上で重要な役割を担います。
本稿では,ソフトウェア工学の確立した実践に触発されたコード生成フレームワークであるLCGを紹介する。
LCGは複数のLarge Language Model (LLM)エージェントを利用して、LCGWaterfall、LCGTDD、LCGScrumといった様々なソフトウェアプロセスモデルをエミュレートする。
各モデルは、要件エンジニア、アーキテクト、開発者、テスタ、スクラムマスターといった特定の役割をLLMエージェントに割り当て、典型的な開発活動やコミュニケーションパターンを反映します。
チェーン・オブ・シンクとプロンプト・コンポジション技術を活用した共同作業を通じて、エージェントはコード品質を向上させるために継続的に洗練される。
GPT3.5を基盤となるLCMとベースライン(GPT)として,HumanEval,HumanEval-ET,MBPP,MBPP-ETの4つのコード生成ベンチマークでLCGを評価する。
結果はLCGScrumが他のモデルより優れており、HumanEval、HumanEval-ET、MBPP、MBPP-ETでPass@1スコアが75.2、65.5、82.5、56.7に達していることを示している。
設計とコードレビューは例外処理の強化に寄与する一方で、設計、テスト、コードレビューはコードの臭いを軽減する。
さらに、すべてのモデルでPass@1に無視できる影響を示す。
しかし、Pass@1のバリエーションは、HumanEvalの5から60以上のGPT3.5モデルバージョンで顕著であり、モデルバージョン間のLCGの安定性を強調している。
この安定性は、LLM生成コードの品質と一貫性を高めるために、ソフトウェアプロセスモデルを採用することの重要性を浮き彫りにしている。
関連論文リスト
- Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
本稿では,データセット間のデータ品質向上を自動化する新しいStar-Agentsフレームワークを提案する。
このフレームワークは最初,複数のLDMエージェントを用いた多様なインストラクションデータを生成する。
生成したデータは、難易度と品質の両方を評価する二重モデル法を用いて厳密な評価を行う。
論文 参考訳(メタデータ) (2024-11-21T02:30:53Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
大規模言語モデル(LLM)は急速に進歩し、印象的な機能を示している。
In-Context Learning (ICL) など。
効率的なファインチューニング(PEFT)は、現在2つの主要な拡張方法である。
下流タスクへのLLM。
我々は、モデルが微調整なしで新しいタスクに迅速に適応できるパラダイムである参照信頼復号(RTD)を提案する。
論文 参考訳(メタデータ) (2024-09-30T10:48:20Z) - Think-on-Process: Dynamic Process Generation for Collaborative Development of Multi-Agent System [13.65717444483291]
ToP (Think-on-Process) はソフトウェア開発のための動的プロセス生成フレームワークである。
本フレームワークはGPT-3.5とGPT-4の動的プロセス生成能力を著しく向上させる。
論文 参考訳(メタデータ) (2024-09-10T15:02:34Z) - GenAgent: Build Collaborative AI Systems with Automated Workflow Generation -- Case Studies on ComfyUI [64.57616646552869]
本稿では、モデル、データソース、パイプラインを統合し、複雑で多様なタスクを解決するためにパフォーマンスを向上させるために使用される協調AIシステムについて検討する。
我々は、LLMベースのフレームワークであるGenAgentを紹介した。
その結果、GenAgentは実行レベルおよびタスクレベルの評価においてベースラインアプローチよりも優れていた。
論文 参考訳(メタデータ) (2024-09-02T17:44:10Z) - LLM-Based Test-Driven Interactive Code Generation: User Study and Empirical Evaluation [13.800675921118348]
本稿では,ガイド付き意図明確化のための対話型ワークフローTiCoderを提案する。
コード生成精度を向上させるためのワークフローの有効性を実証的に評価する。
我々は,5つのユーザインタラクション内において,データセットと全LLMのパス@1コード生成精度が平均45.97%向上したことを観察した。
論文 参考訳(メタデータ) (2024-04-15T19:16:32Z) - AgentCoder: Multi-Agent-based Code Generation with Iterative Testing and Optimisation [11.155351560550853]
本稿では,マルチエージェント・アシスタント・コード生成(AgentCoder)を紹介する。
AgentCoderは,プログラマエージェント,テストデザイナエージェント,テストエグゼクタエージェントという,特殊なエージェントを備えたマルチエージェントフレームワークを備えた,斬新なソリューションだ。
9つのコード生成モデルと12つの拡張アプローチの実験では、既存のコード生成モデルよりもAgentCoderの方が優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-12-20T13:22:41Z) - LLM-Assisted Code Cleaning For Training Accurate Code Generators [53.087019724256606]
コードの品質を調査した結果,より構造化され,読みやすくなれば,コード生成性能が向上することがわかった。
私たちは、これらの原則を使って既存のプログラムを変換する、新しいデータクリーニングパイプラインを構築します。
提案手法を2つのアルゴリズムコード生成ベンチマークで評価した結果,微調整のCodeLLaMa-7Bでは,元のデータセットの微調整に比べて最大30%性能が向上していることがわかった。
論文 参考訳(メタデータ) (2023-11-25T02:45:50Z) - Execution-based Code Generation using Deep Reinforcement Learning [8.085533911328577]
PPOCoderは、事前訓練されたPLモデルとプロキシポリシー最適化を組み合わせた、コード生成のための新しいフレームワークである。
PPOCoderは、外部コード固有の知識をモデル最適化プロセスにシームレスに統合する。
PPOCoderはタスクに依存しない、モデルに依存しないフレームワークで、さまざまなコード生成タスクやPLで使用できます。
論文 参考訳(メタデータ) (2023-01-31T18:02:26Z) - CodeRL: Mastering Code Generation through Pretrained Models and Deep
Reinforcement Learning [92.36705236706678]
CodeRLは、事前訓練されたLMと深層強化学習によるプログラム合成タスクのための新しいフレームワークである。
推論中、我々は重要なサンプリング戦略を持つ新しい生成手順を導入する。
モデルバックボーンについては,CodeT5のエンコーダデコーダアーキテクチャを拡張し,学習目標を拡張した。
論文 参考訳(メタデータ) (2022-07-05T02:42:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。