Knowledge-guided Machine Learning: Current Trends and Future Prospects
- URL: http://arxiv.org/abs/2403.15989v2
- Date: Wed, 1 May 2024 20:57:12 GMT
- Title: Knowledge-guided Machine Learning: Current Trends and Future Prospects
- Authors: Anuj Karpatne, Xiaowei Jia, Vipin Kumar,
- Abstract summary: It also provides an introduction to the current state of research in the emerging field of scientific knowledge-guided machine learning (KGML)
We discuss different facets of KGML research in terms of the type of scientific knowledge used, the form of knowledge-ML integration explored, and the method for incorporating scientific knowledge in ML.
- Score: 14.783972088722193
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents an overview of scientific modeling and discusses the complementary strengths and weaknesses of ML methods for scientific modeling in comparison to process-based models. It also provides an introduction to the current state of research in the emerging field of scientific knowledge-guided machine learning (KGML) that aims to use both scientific knowledge and data in ML frameworks to achieve better generalizability, scientific consistency, and explainability of results. We discuss different facets of KGML research in terms of the type of scientific knowledge used, the form of knowledge-ML integration explored, and the method for incorporating scientific knowledge in ML. We also discuss some of the common categories of use cases in environmental sciences where KGML methods are being developed, using illustrative examples in each category.
Related papers
- Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey [51.87875066383221]
This paper introduces fundamental concepts, traditional methods, and benchmark datasets, then examine the various roles Machine Learning plays in improving CFD.
We highlight real-world applications of ML for CFD in critical scientific and engineering disciplines, including aerodynamics, combustion, atmosphere & ocean science, biology fluid, plasma, symbolic regression, and reduced order modeling.
We draw the conclusion that ML is poised to significantly transform CFD research by enhancing simulation accuracy, reducing computational time, and enabling more complex analyses of fluid dynamics.
arXiv Detail & Related papers (2024-08-22T07:33:11Z) - Knowledge Mechanisms in Large Language Models: A Survey and Perspective [88.51320482620679]
This paper reviews knowledge mechanism analysis from a novel taxonomy including knowledge utilization and evolution.
We discuss what knowledge LLMs have learned, the reasons for the fragility of parametric knowledge, and the potential dark knowledge (hypothesis) that will be challenging to address.
arXiv Detail & Related papers (2024-07-22T06:15:59Z) - A Comprehensive Survey of Scientific Large Language Models and Their Applications in Scientific Discovery [68.48094108571432]
Large language models (LLMs) have revolutionized the way text and other modalities of data are handled.
We aim to provide a more holistic view of the research landscape by unveiling cross-field and cross-modal connections between scientific LLMs.
arXiv Detail & Related papers (2024-06-16T08:03:24Z) - LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery [141.39722070734737]
We propose to enhance the knowledge-driven, abstract reasoning abilities of Large Language Models with the computational strength of simulations.
We introduce Scientific Generative Agent (SGA), a bilevel optimization framework.
We conduct experiments to demonstrate our framework's efficacy in law discovery and molecular design.
arXiv Detail & Related papers (2024-05-16T03:04:10Z) - Opportunities for machine learning in scientific discovery [16.526872562935463]
We review how the scientific community can increasingly leverage machine-learning techniques to achieve scientific discoveries.
Although challenges remain, principled use of ML is opening up new avenues for fundamental scientific discoveries.
arXiv Detail & Related papers (2024-05-07T09:58:02Z) - Understanding Biology in the Age of Artificial Intelligence [4.299566787216408]
Modern life sciences research is increasingly relying on artificial intelligence approaches to model biological systems.
Although machine learning (ML) models are useful for identifying patterns in large, complex data sets, its widespread application in biological sciences represents a significant deviation from traditional methods of scientific inquiry.
Here, we identify general principles that can guide the design and application of ML systems to model biological phenomena and advance scientific knowledge.
arXiv Detail & Related papers (2024-03-06T23:20:34Z) - Diverse Explanations From Data-Driven and Domain-Driven Perspectives in the Physical Sciences [4.442043151145212]
This Perspective explores the sources and implications of diverse explanations in machine learning applications for physical sciences.
We examine how different models, explanation methods, levels of feature attribution, and stakeholder needs can result in varying interpretations of ML outputs.
Our analysis underscores the importance of considering multiple perspectives when interpreting ML models in scientific contexts.
arXiv Detail & Related papers (2024-02-01T05:28:28Z) - Scientific Large Language Models: A Survey on Biological & Chemical Domains [47.97810890521825]
Large Language Models (LLMs) have emerged as a transformative power in enhancing natural language comprehension.
The application of LLMs extends beyond conventional linguistic boundaries, encompassing specialized linguistic systems developed within various scientific disciplines.
As a burgeoning area in the community of AI for Science, scientific LLMs warrant comprehensive exploration.
arXiv Detail & Related papers (2024-01-26T05:33:34Z) - Scientific Inference With Interpretable Machine Learning: Analyzing Models to Learn About Real-World Phenomena [4.312340306206884]
Interpretable machine learning offers a solution by analyzing models holistically to derive interpretations.
Current IML research is focused on auditing ML models rather than leveraging them for scientific inference.
We present a framework for designing IML methods-termed 'property descriptors' that illuminate not just the model, but also the phenomenon it represents.
arXiv Detail & Related papers (2022-06-11T10:13:21Z) - A Hybrid Science-Guided Machine Learning Approach for Modeling and
Optimizing Chemical Processes [0.0]
Hybrid process modeling and optimization is combined with a science-guided machine learning (SGML) approach.
For applying ML to improve models, we present expositions of the sub-categories of direct serial and parallel hybrid modeling.
For applying scientific principles to improve ML models, we discuss the sub-categories of science-guided design, learning and refinement.
arXiv Detail & Related papers (2021-12-02T18:24:13Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
We review the existing research regarding the use of machine learning in nano-scale biomedical engineering.
The main challenges that can be formulated as ML problems are classified into the three main categories.
For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations.
arXiv Detail & Related papers (2020-08-05T15:45:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.