論文の概要: L-MAE: Longitudinal masked auto-encoder with time and severity-aware encoding for diabetic retinopathy progression prediction
- arxiv url: http://arxiv.org/abs/2403.16272v1
- Date: Sun, 24 Mar 2024 19:34:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 16:46:40.325261
- Title: L-MAE: Longitudinal masked auto-encoder with time and severity-aware encoding for diabetic retinopathy progression prediction
- Title(参考訳): L-MAE:糖尿病網膜症進行予測のための経時的および重度認識型自己エンコーダ
- Authors: Rachid Zeghlache, Pierre-Henri Conze, Mostafa El Habib Daho, Yihao Li, Alireza Rezaei, Hugo Le Boité, Ramin Tadayoni, Pascal Massin, Béatrice Cochener, Ikram Brahim, Gwenolé Quellec, Mathieu Lamard,
- Abstract要約: 自己教師付き学習(SSL)に基づく事前学習戦略は、コンピュータビジョンにおける多くの下流タスクに有効なプレテキストタスクであることが証明されている。
我々は、よく知られたTransformer-based MAEに基づく長手マスク付きオートエンコーダ(MAE)を開発した。
OPHDIATは糖尿病網膜症(DR)を対象とする大規模フォローアップスクリーニングデータセットであり,縦断的タスクで事前訓練した体重を測定した。
- 参考スコア(独自算出の注目度): 2.663690023739801
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pre-training strategies based on self-supervised learning (SSL) have proven to be effective pretext tasks for many downstream tasks in computer vision. Due to the significant disparity between medical and natural images, the application of typical SSL is not straightforward in medical imaging. Additionally, those pretext tasks often lack context, which is critical for computer-aided clinical decision support. In this paper, we developed a longitudinal masked auto-encoder (MAE) based on the well-known Transformer-based MAE. In particular, we explored the importance of time-aware position embedding as well as disease progression-aware masking. Taking into account the time between examinations instead of just scheduling them offers the benefit of capturing temporal changes and trends. The masking strategy, for its part, evolves during follow-up to better capture pathological changes, ensuring a more accurate assessment of disease progression. Using OPHDIAT, a large follow-up screening dataset targeting diabetic retinopathy (DR), we evaluated the pre-trained weights on a longitudinal task, which is to predict the severity label of the next visit within 3 years based on the past time series examinations. Our results demonstrated the relevancy of both time-aware position embedding and masking strategies based on disease progression knowledge. Compared to popular baseline models and standard longitudinal Transformers, these simple yet effective extensions significantly enhance the predictive ability of deep classification models.
- Abstract(参考訳): 自己教師付き学習(SSL)に基づく事前学習戦略は、コンピュータビジョンにおける多くの下流タスクに有効なプレテキストタスクであることが証明されている。
医用画像と自然画像の間に大きな差異があるため、一般的なSSLの応用は、医用画像では容易ではない。
さらに、これらのプレテキストタスクは文脈を欠くことが多く、これはコンピュータ支援の臨床的意思決定支援に不可欠である。
本稿では,よく知られたTransformer-based MAEに基づく縦型マスク付きオートエンコーダ(MAE)を開発した。
特に,病状進行認知マスキングと同様に,時間認識位置埋め込みの重要性について検討した。
単にスケジュールするだけでなく、試験間の時間を考慮すると、時間的変化や傾向を捉える利点がある。
マスク戦略は、その部分において、病的変化をより正確に把握し、疾患の進行をより正確に評価するために、フォローアップ中に進化する。
糖尿病性網膜症(DR)を対象とする大規模フォローアップスクリーニングデータセットであるOPHDIATを用いて,過去時系列検査に基づいて,過去3年以内に来訪者の重度ラベルを予測することを目的とした,長手作業における事前訓練体重の評価を行った。
以上の結果から,病状進行知識に基づく時間認識位置埋め込みとマスキング戦略の関連性を示した。
一般的なベースラインモデルや標準長手トランスフォーマーと比較して、これらの単純で効果的な拡張は深い分類モデルの予測能力を著しく向上させる。
関連論文リスト
- Extrapolating Prospective Glaucoma Fundus Images through Diffusion Model in Irregular Longitudinal Sequences [46.80977922491862]
緑内障進行予測のための経時的データセットの利用は、早期治療の介入を支援するための説得力のあるアプローチを提供する。
本研究では, 既往の経時的底面像を外挿し, 将来像を予測できる新しい拡散モデルを提案する。
論文 参考訳(メタデータ) (2024-10-28T15:31:47Z) - Early Prediction of Causes (not Effects) in Healthcare by Long-Term Clinical Time Series Forecasting [11.96384267146423]
臨床変数の時系列予測(TSF)により原因を直接予測することを提案する。
モデルトレーニングは特定のラベルに依存しないため、予測されたデータはコンセンサスベースのラベルを予測するために使用できる。
論文 参考訳(メタデータ) (2024-08-07T14:52:06Z) - Deep Learning to Predict Glaucoma Progression using Structural Changes in the Eye [0.20718016474717196]
緑内障は視神経症を特徴とする慢性眼疾患であり、不可逆的な視力喪失を引き起こす。
早期発見は萎縮をモニターし、さらなる視力障害を防ぐ治療戦略を開発するために重要である。
本研究では,深層学習モデルを用いて,複雑な疾患の特徴と進行基準を同定する。
論文 参考訳(メタデータ) (2024-06-09T01:12:41Z) - Harnessing the power of longitudinal medical imaging for eye disease prognosis using Transformer-based sequence modeling [49.52787013516891]
今回提案した Longitudinal Transformer for Survival Analysis (LTSA, Longitudinal Transformer for Survival Analysis, LTSA) は, 縦断的医用画像から動的疾患の予後を予測できる。
時間的注意分析により、最新の画像は典型的には最も影響力のあるものであるが、以前の画像は追加の予後に価値があることが示唆された。
論文 参考訳(メタデータ) (2024-05-14T17:15:28Z) - Bidirectional Generative Pre-training for Improving Healthcare Time-series Representation Learning [9.621781933666844]
我々は、BiTimely Generative Pre-trained Transformer (BiTimelyGPT) と呼ばれる新しいアーキテクチャを提案する。
BiTimelyGPTによる生体信号と経時的臨床記録の経時的変化予測
BiTimelyGPTは、生体信号と経時的臨床記録を用いて、神経機能、疾患診断、生理的兆候を予測する上で優れた性能を示す。
論文 参考訳(メタデータ) (2024-02-14T20:19:24Z) - LMT: Longitudinal Mixing Training, a Framework to Predict Disease
Progression from a Single Image [1.805673949640389]
本稿では,2つの連続試験間の重み付き平均時間である$t_mix$を用いて,時間認識モデルのトレーニングを行う新しい方法を提案する。
AUCは0.798で、視線は0.641で、視線は1枚の画像で重篤なDRを発生させるかどうかを予測した。
論文 参考訳(メタデータ) (2023-10-16T14:01:20Z) - LATTE: Label-efficient Incident Phenotyping from Longitudinal Electronic
Health Records [11.408950540503112]
本稿では, LAbel-efficienT incidenT phEnotypingアルゴリズムを提案する。
LATTEは2型糖尿病の発症、心不全、多発性硬化症の発症と再発の3つの分析に基づいて評価された。
論文 参考訳(メタデータ) (2023-05-19T03:28:51Z) - Safe AI for health and beyond -- Monitoring to transform a health
service [51.8524501805308]
機械学習アルゴリズムの出力を監視するために必要なインフラストラクチャを評価する。
モデルのモニタリングと更新の例を示す2つのシナリオを提示します。
論文 参考訳(メタデータ) (2023-03-02T17:27:45Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
糖尿病網膜症における訓練方法の違いによる影響を比較検討した。
本稿では,定量的性能,学習した特徴表現の統計,解釈可能性,画像歪みに対する頑健性など,さまざまな側面について検討する。
以上の結果から,ImageNet事前学習モデルでは,画像歪みに対する性能,一般化,堅牢性が著しく向上していることが示唆された。
論文 参考訳(メタデータ) (2021-06-25T08:32:45Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
本稿では,患者の医療旅行におけるコンテキスト依存と時間的関係を捉える,新たな自己注意機構を提案する。
エンド・ツー・エンドの双方向時間エンコーダネットワーク(BiteNet)が患者の旅路の表現を学習する。
実世界のEHRデータセットを用いた2つの教師付き予測と2つの教師なしクラスタリングタスクにおける手法の有効性を評価した。
論文 参考訳(メタデータ) (2020-09-24T00:42:36Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
未熟児網膜症(英: Retinopathy of Prematurity、ROP)は、主に体重の低い未熟児に影響を及ぼす眼疾患である。
網膜の血管の増殖を招き、視力喪失を招き、最終的には網膜剥離を招き、失明を引き起こす。
近年,ディープラーニングを用いて診断を自動化する試みが盛んに行われている。
本稿では,従来のモデルの成功を基盤として,オブジェクトセグメンテーションと畳み込みニューラルネットワーク(CNN)を組み合わせた新しいアーキテクチャを開発する。
提案システムでは,まず対象分割モデルを訓練し,画素レベルでの区切り線を識別し,その結果のマスクを追加の"カラー"チャネルとして付加する。
論文 参考訳(メタデータ) (2020-04-03T14:07:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。