論文の概要: AutoInst: Automatic Instance-Based Segmentation of LiDAR 3D Scans
- arxiv url: http://arxiv.org/abs/2403.16318v1
- Date: Sun, 24 Mar 2024 22:53:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 16:26:58.813073
- Title: AutoInst: Automatic Instance-Based Segmentation of LiDAR 3D Scans
- Title(参考訳): AutoInst: LiDAR 3D スキャンの自動インスタンスベースセグメンテーション
- Authors: Cedric Perauer, Laurenz Adrian Heidrich, Haifan Zhang, Matthias Nießner, Anastasiia Kornilova, Alexey Artemov,
- Abstract要約: 3D環境を理解するには、きめ細かい風景を理解する必要がある。
教師なしの方法で3次元シーンのインスタンスセグメンテーションを予測することを提案する。
平均精度は13.3%,F1スコアは9.1%向上した。
- 参考スコア(独自算出の注目度): 41.17467024268349
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, progress in acquisition equipment such as LiDAR sensors has enabled sensing increasingly spacious outdoor 3D environments. Making sense of such 3D acquisitions requires fine-grained scene understanding, such as constructing instance-based 3D scene segmentations. Commonly, a neural network is trained for this task; however, this requires access to a large, densely annotated dataset, which is widely known to be challenging to obtain. To address this issue, in this work we propose to predict instance segmentations for 3D scenes in an unsupervised way, without relying on ground-truth annotations. To this end, we construct a learning framework consisting of two components: (1) a pseudo-annotation scheme for generating initial unsupervised pseudo-labels; and (2) a self-training algorithm for instance segmentation to fit robust, accurate instances from initial noisy proposals. To enable generating 3D instance mask proposals, we construct a weighted proxy-graph by connecting 3D points with edges integrating multi-modal image- and point-based self-supervised features, and perform graph-cuts to isolate individual pseudo-instances. We then build on a state-of-the-art point-based architecture and train a 3D instance segmentation model, resulting in significant refinement of initial proposals. To scale to arbitrary complexity 3D scenes, we design our algorithm to operate on local 3D point chunks and construct a merging step to generate scene-level instance segmentations. Experiments on the challenging SemanticKITTI benchmark demonstrate the potential of our approach, where it attains 13.3% higher Average Precision and 9.1% higher F1 score compared to the best-performing baseline. The code will be made publicly available at https://github.com/artonson/autoinst.
- Abstract(参考訳): 近年、LiDARセンサーなどの取得装置の進歩により、ますます広まる屋外3D環境の検知が可能になった。
このような3D取得を理解するには、インスタンスベースの3Dシーンセグメンテーションの構築など、きめ細かいシーン理解が必要である。
一般的に、ニューラルネットワークは、このタスクのためにトレーニングされるが、これは大きな、密度の高い注釈付きデータセットへのアクセスを必要とする。
この問題に対処するため,本研究では,地平線アノテーションに頼ることなく,教師なしの方法で3次元シーンのインスタンスセグメンテーションを予測することを提案する。
この目的のために,(1)初期教師なしの擬似ラベルを生成する擬似アノテーションスキーム,(2)初期雑音の多い提案から,頑健で正確なインスタンスに適合するサンプルセグメンテーションのための自己学習アルゴリズムという,2つのコンポーネントからなる学習フレームワークを構築した。
複数モーダル画像とポイントベースの自己監督機能を統合したエッジと3Dポイントを結合して重み付けされたプロキシグラフを構築し,個別の擬似事象を分離するためのグラフカットを行う。
そして、最先端のポイントベースアーキテクチャを構築し、3Dインスタンスセグメンテーションモデルをトレーニングし、最初の提案を大幅に改善します。
任意の複雑な3Dシーンにスケールするために、局所的な3Dポイントチャンクを操作するアルゴリズムを設計し、シーンレベルのインスタンスセグメンテーションを生成するためのマージステップを構築する。
挑戦的なSemanticKITTIベンチマークの実験では、我々のアプローチの可能性を実証し、平均精度が13.3%、F1スコアが9.1%向上した。
コードはhttps://github.com/artonson/autoinst.comで公開される。
関連論文リスト
- SA3DIP: Segment Any 3D Instance with Potential 3D Priors [41.907914881608995]
本稿では,SA3DIPを提案する。SA3DIPは,任意の3Dインスタンスを,潜在的3Dプライオリティを利用してセグメント化するための新しい手法である。
具体的には,幾何学的およびテクスチャ的先行性の両方に基づいて,相補的な3Dプリミティブを生成する。
一方,3次元検出器を用いて3次元空間からの補足制約を導入し,さらなるマージプロセスの導出を行う。
論文 参考訳(メタデータ) (2024-11-06T10:39:00Z) - Bayesian Self-Training for Semi-Supervised 3D Segmentation [59.544558398992386]
3Dセグメンテーションはコンピュータビジョンの中核的な問題である。
完全に教師されたトレーニングを採用するために、3Dポイントクラウドを密にラベル付けすることは、労働集約的で高価です。
半教師付きトレーニングは、ラベル付きデータの小さなセットのみを付与し、より大きなラベル付きデータセットを伴って、より実用的な代替手段を提供する。
論文 参考訳(メタデータ) (2024-09-12T14:54:31Z) - SAI3D: Segment Any Instance in 3D Scenes [68.57002591841034]
新規なゼロショット3Dインスタンスセグメンテーション手法であるSAI3Dを紹介する。
我々の手法は3Dシーンを幾何学的プリミティブに分割し、段階的に3Dインスタンスセグメンテーションにマージする。
ScanNet、Matterport3D、さらに難しいScanNet++データセットに関する実証的な評価は、我々のアプローチの優位性を示している。
論文 参考訳(メタデータ) (2023-12-17T09:05:47Z) - You Only Need One Thing One Click: Self-Training for Weakly Supervised
3D Scene Understanding [107.06117227661204]
私たちはOne Thing One Click''を提案する。つまり、アノテーションはオブジェクトごとに1つのポイントをラベル付けするだけです。
グラフ伝搬モジュールによって促進されるトレーニングとラベル伝搬を反復的に行う。
我々のモデルは、ポイントクラスタリング戦略を備えた3Dインスタンスセグメンテーションと互換性がある。
論文 参考訳(メタデータ) (2023-03-26T13:57:00Z) - UnScene3D: Unsupervised 3D Instance Segmentation for Indoor Scenes [35.38074724231105]
UnScene3Dは、クラスに依存しない屋内スキャンの3Dインスタンスセグメンテーションのための、完全に教師なしの3D学習アプローチである。
高分解能な3次元データに基づく効率的な表現と学習を可能にする。
提案手法は,最先端の教師なし3次元インスタンス分割法を平均精度300%以上で改善する。
論文 参考訳(メタデータ) (2023-03-25T19:15:16Z) - Collaborative Propagation on Multiple Instance Graphs for 3D Instance
Segmentation with Single-point Supervision [63.429704654271475]
本稿では,1つのオブジェクトを1つのポイントでラベル付けするだけでよい,弱教師付き手法RWSegを提案する。
これらの疎いラベルにより、セマンティック情報とインスタンス情報を伝達する2つの分岐を持つ統一的なフレームワークを導入する。
具体的には、異なるインスタンスグラフ間の競合を促進するクロスグラフ競合ランダムウォークス(CRW)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-08-10T02:14:39Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
モノクロ3次元物体検出は、2次元入力画像から物体の位置と特性を抽出することを目的としている。
従来のアプローチでは、空間から3D境界ボックスをサンプリングし、対象オブジェクトと各オブジェクトの関係を推定するが、有効サンプルの確率は3D空間で比較的小さい。
我々は,まず最初の予測から始めて,各ステップで1つの3dパラメータだけを変えて,基礎的真理に向けて徐々に洗練することを提案する。
これは、いくつかのステップの後に報酬を得るポリシーを設計する必要があるため、最適化するために強化学習を採用します。
論文 参考訳(メタデータ) (2020-08-31T17:10:48Z) - Spatial Semantic Embedding Network: Fast 3D Instance Segmentation with
Deep Metric Learning [5.699350798684963]
ディープラーニングを用いた3次元インスタンスセグメンテーションのための,単純かつ効率的なアルゴリズムを提案する。
大規模シーンからの高レベルのインテリジェントなタスクに対して、3Dインスタンスセグメンテーションはオブジェクトの個々のインスタンスを認識する。
我々は,ScanNet 3D インスタンス分割ベンチマークにおいて,我々のアルゴリズムの最先端性能をAPスコアで示す。
論文 参考訳(メタデータ) (2020-07-07T02:17:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。