Optimizing Maximally Entangled State Generation via Pontryagin's Principle
- URL: http://arxiv.org/abs/2403.16321v2
- Date: Thu, 20 Feb 2025 20:34:16 GMT
- Title: Optimizing Maximally Entangled State Generation via Pontryagin's Principle
- Authors: Nahid Binandeh Dehaghani, A. Pedro Aguiar, Rafal Wisniewski,
- Abstract summary: We propose an optimal control strategy to generate maximally entangled states in bipartite quantum systems.<n>We derive time-dependent control fields that maximize the entanglement measure, specifically concurrence, within minimal time.<n>The strategy is numerically validated through simulations, demonstrating its ability to drive the system from an initial perturbed separable state to a maximally entangled target state.
- Score: 1.4811951486536687
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose an optimal control strategy to generate maximally entangled states in bipartite quantum systems. Leveraging the Pontryagin Principle, we derive time-dependent control fields that maximize the entanglement measure, specifically concurrence, within minimal time while adhering to input constraints. Our formulation addresses the Liouville-von Neumann dynamics of the reduced density matrix under unitary evolution. The strategy is numerically validated through simulations, demonstrating its ability to drive the system from an initial perturbed separable state to a maximally entangled target state. The results showcase the effectiveness of switching control fields in optimizing entanglement, with potential applications in quantum technologies, including communication, computation, and sensing.
Related papers
- Quantum Gate Optimization for Rydberg Architectures in the Weak-Coupling
Limit [55.05109484230879]
We demonstrate machine learning assisted design of a two-qubit gate in a Rydberg tweezer system.
We generate optimal pulse sequences that implement a CNOT gate with high fidelity.
We show that local control of single qubit operations is sufficient for performing quantum computation on a large array of atoms.
arXiv Detail & Related papers (2023-06-14T18:24:51Z) - Optimal State Manipulation for a Two-Qubit System Driven by Coherent and
Incoherent Controls [77.34726150561087]
State preparation is important for optimal control of two-qubit quantum systems.
We exploit two physically different coherent control and optimize the Hilbert-Schmidt target density matrices.
arXiv Detail & Related papers (2023-04-03T10:22:35Z) - Quantum Pontryagin Neural Networks in Gamkrelidze Form Subjected to the
Purity of Quantum Channels [1.376408511310322]
We investigate a time and energy optimal control problem for open quantum systems.
We deal with the state constraints through Gamkrelidze revisited method.
We obtain the necessary conditions of optimality through the Pontryagin Minimum Principle.
arXiv Detail & Related papers (2023-03-17T23:21:54Z) - An Application of Pontryagin Neural Networks to Solve Optimal Quantum
Control Problems [1.5469452301122175]
Pontryagin maximum principle has proved to play an important role to achieve the maximum fidelity in an optimum time or energy.
We formulate a control constrained optimal control problem where we aim to minimize time and also energy subjected to a quantum system satisfying the bilinear Schrodinger equation.
We make use of the so-called "qutip" package in python, and the newly developed "tfc" python package.
arXiv Detail & Related papers (2023-02-01T17:48:07Z) - Quantum State Transfer Optimization: Balancing Fidelity and Energy
Consumption using Pontryagin Maximum Principle [1.0819408603463425]
We aim to navigate a quantum system from an initial state to a desired state while adhering to the principles of the Liouville-von Neumann equation.
We derive optimality conditions in the form of the Pontryagin Principle (PMP) for the matrix-valued dynamics associated with this problem.
We present a time-discretized computational scheme designed to solve the optimal control problem.
arXiv Detail & Related papers (2023-01-30T12:53:48Z) - Hamiltonian Quantum Generative Adversarial Networks [4.806505912512235]
We propose Hamiltonian Quantum Generative Adversarial Networks (HQuGANs) to learn to generate unknown input quantum states.
We numerically demonstrate the capabilities of the proposed framework to learn various highly entangled many-body quantum states.
arXiv Detail & Related papers (2022-11-04T16:53:55Z) - Optimal control for state preparation in two-qubit open quantum systems
driven by coherent and incoherent controls via GRAPE approach [77.34726150561087]
We consider a model of two qubits driven by coherent and incoherent time-dependent controls.
The dynamics of the system is governed by a Gorini-Kossakowski-Sudarshan-Lindblad master equation.
We study evolution of the von Neumann entropy, purity, and one-qubit reduced density matrices under optimized controls.
arXiv Detail & Related papers (2022-11-04T15:20:18Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - Physics-informed neural networks for quantum control [0.0]
We introduce a computational method for optimal quantum control problems via physics-informed neural networks (PINNs)
We apply our methodology to open quantum systems by efficiently solving the state-to-state transfer problem with high probabilities, short-time evolution, and using low-energy consumption controls.
arXiv Detail & Related papers (2022-06-13T16:17:22Z) - On optimization of coherent and incoherent controls for two-level
quantum systems [77.34726150561087]
This article considers some control problems for closed and open two-level quantum systems.
The closed system's dynamics is governed by the Schr"odinger equation with coherent control.
The open system's dynamics is governed by the Gorini-Kossakowski-Sudarshan-Lindblad master equation.
arXiv Detail & Related papers (2022-05-05T09:08:03Z) - Application of Pontryagin's Maximum Principle to Quantum Metrology in
Dissipative Systems [8.920103626492315]
We look for the optimal control that maximizes quantum Fisher information for "twist and turn" problem.
We find that the optimal control is singular without dissipation but can become unbounded once the quantum decoherence is introduced.
arXiv Detail & Related papers (2022-04-30T00:02:57Z) - A Quantum Optimal Control Problem with State Constrained Preserving
Coherence [68.8204255655161]
We consider a three-level $Lambda$-type atom subjected to Markovian decoherence characterized by non-unital decoherence channels.
We formulate the quantum optimal control problem with state constraints where the decoherence level remains within a pre-defined bound.
arXiv Detail & Related papers (2022-03-24T21:31:34Z) - High Fidelity Quantum State Transfer by Pontryagin Maximum Principle [68.8204255655161]
We address the problem of maximizing the fidelity in a quantum state transformation process satisfying the Liouville-von Neumann equation.
By introducing fidelity as the performance index, we aim at maximizing the similarity of the final state density operator with the one of the desired target state.
arXiv Detail & Related papers (2022-03-07T13:27:26Z) - Direct Optimal Control Approach to Laser-Driven Quantum Particle
Dynamics [77.34726150561087]
We propose direct optimal control as a robust and flexible alternative to indirect control theory.
The method is illustrated for the case of laser-driven wavepacket dynamics in a bistable potential.
arXiv Detail & Related papers (2020-10-08T07:59:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.