論文の概要: REFRAME: Reflective Surface Real-Time Rendering for Mobile Devices
- arxiv url: http://arxiv.org/abs/2403.16481v1
- Date: Mon, 25 Mar 2024 07:07:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 15:37:57.134956
- Title: REFRAME: Reflective Surface Real-Time Rendering for Mobile Devices
- Title(参考訳): REFRAME: モバイルデバイスの反射面リアルタイムレンダリング
- Authors: Chaojie Ji, Yufeng Li, Yiyi Liao,
- Abstract要約: 本研究は,様々な場面でリアルタイムな新規ビュー合成を実現するための課題に取り組む。
既存のリアルタイムレンダリング手法、特にメッシュに基づくレンダリングは、リッチなビュー依存の外観を持つモデリングサーフェスにおいて、サブパーパフォーマンスを持つことが多い。
- 参考スコア(独自算出の注目度): 51.983541908241726
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work tackles the challenging task of achieving real-time novel view synthesis on various scenes, including highly reflective objects and unbounded outdoor scenes. Existing real-time rendering methods, especially those based on meshes, often have subpar performance in modeling surfaces with rich view-dependent appearances. Our key idea lies in leveraging meshes for rendering acceleration while incorporating a novel approach to parameterize view-dependent information. We decompose the color into diffuse and specular, and model the specular color in the reflected direction based on a neural environment map. Our experiments demonstrate that our method achieves comparable reconstruction quality for highly reflective surfaces compared to state-of-the-art offline methods, while also efficiently enabling real-time rendering on edge devices such as smartphones.
- Abstract(参考訳): 本研究は、高反射性オブジェクトや非有界屋外シーンなど、様々な場面でリアルタイムの新規ビュー合成を実現するという課題に取り組む。
既存のリアルタイムレンダリング手法、特にメッシュに基づくレンダリングは、リッチなビュー依存の外観を持つモデリングサーフェスにおいて、サブパーパフォーマンスを持つことが多い。
私たちのキーとなるアイデアは、ビュー依存情報をパラメータ化するための新しいアプローチを取り入れながら、メッシュをレンダリングアクセラレーションに活用することにあります。
色を拡散およびスペクトルに分解し、ニューラル環境マップに基づいて反射方向のスペクトル色をモデル化する。
提案手法は,スマートフォンなどのエッジデバイス上でのリアルタイムレンダリングを効率よく実現しつつ,最先端のオフライン手法と比較して,反射面の再現性が高いことを示す。
関連論文リスト
- NeRF-Casting: Improved View-Dependent Appearance with Consistent Reflections [57.63028964831785]
最近の研究は、遠方の環境照明の詳細な明細な外観を描画するNeRFの能力を改善しているが、近い内容の一貫した反射を合成することはできない。
我々はこれらの問題をレイトレーシングに基づくアプローチで解決する。
このモデルでは、それぞれのカメラ線に沿った点における視界依存放射率を求めるために高価なニューラルネットワークをクエリする代わりに、これらの点から光を流し、NeRF表現を通して特徴ベクトルを描画します。
論文 参考訳(メタデータ) (2024-05-23T17:59:57Z) - TraM-NeRF: Tracing Mirror and Near-Perfect Specular Reflections through
Neural Radiance Fields [3.061835990893184]
NeRF(Neural Radiance Fields)のような暗黙の表現は、複雑なシーンを細かな詳細でレンダリングするための印象的な結果を示した。
本研究では,NeRF内部のボリュームレンダリングに適した新しいリフレクショントレーシング手法を提案する。
少数の試料から,光線による重要サンプリングと透過率計算の効率的な手法を導出した。
論文 参考訳(メタデータ) (2023-10-16T17:59:56Z) - Neural Relighting with Subsurface Scattering by Learning the Radiance
Transfer Gradient [73.52585139592398]
本稿では,ボリュームレンダリングによる放射移動場学習のための新しいフレームワークを提案する。
我々は、我々のコードと、地下散乱効果を持つ新しい光ステージのオブジェクトデータセットを公開します。
論文 参考訳(メタデータ) (2023-06-15T17:56:04Z) - Neural Microfacet Fields for Inverse Rendering [54.15870869037466]
本研究では,シーンの画像から材料,幾何学,環境照明を復元する手法を提案する。
本手法では, 各試料を(潜在的に不透明な)表面として扱うことにより, ボリューム設定内にマイクロファセット反射率モデルを用いる。
論文 参考訳(メタデータ) (2023-03-31T05:38:13Z) - ENVIDR: Implicit Differentiable Renderer with Neural Environment
Lighting [9.145875902703345]
ENVIDRは、高精細な反射を伴う表面の高精細なレンダリングと再構成のためのレンダリングとモデリングのためのフレームワークである。
まず、表面光と環境光の相互作用を学習するために、分解レンダリングを用いた新しいニューラルネットワークを提案する。
次に、この学習されたニューラルサーフェスを利用して一般的なシーンを表現するSDFベースのニューラルサーフェスモデルを提案する。
論文 参考訳(メタデータ) (2023-03-23T04:12:07Z) - BakedSDF: Meshing Neural SDFs for Real-Time View Synthesis [42.93055827628597]
本稿では,フォトリアリスティックな新規ビュー合成に適した大規模現実世界シーンの高品質メッシュを再構築する手法を提案する。
我々はまず,シーンの表面に対応する良好なレベルセットを持つように設計された,ハイブリッドなニューラルボリューム・サーフェス・シーン表現を最適化する。
そして、この表現を高品質な三角形メッシュに焼き込み、球面ガウスに基づく、シンプルで高速なビュー依存の外観モデルと組み合わせる。
論文 参考訳(メタデータ) (2023-02-28T18:58:03Z) - DIB-R++: Learning to Predict Lighting and Material with a Hybrid
Differentiable Renderer [78.91753256634453]
そこで本研究では,単体画像から固有物体特性を推定する難題について,微分可能量を用いて検討する。
そこで本研究では、スペクトル化とレイトレーシングを組み合わせることで、これらの効果をサポートするハイブリッド微分可能なDIBR++を提案する。
より高度な物理ベースの微分可能値と比較すると、DIBR++はコンパクトで表現力のあるモデルであるため、高い性能を持つ。
論文 参考訳(メタデータ) (2021-10-30T01:59:39Z) - Object-based Illumination Estimation with Rendering-aware Neural
Networks [56.01734918693844]
個々の物体とその局所画像領域のRGBD外観から高速環境光推定手法を提案する。
推定照明により、仮想オブジェクトは実際のシーンと一貫性のあるシェーディングでARシナリオでレンダリングできる。
論文 参考訳(メタデータ) (2020-08-06T08:23:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。