Fidelity of Wormhole Teleportation in Finite-qubit Systems
- URL: http://arxiv.org/abs/2403.16793v3
- Date: Mon, 17 Jun 2024 08:46:14 GMT
- Title: Fidelity of Wormhole Teleportation in Finite-qubit Systems
- Authors: Zeyu Liu, Pengfei Zhang,
- Abstract summary: Holographic duality, which states gravity and spacetime can emerge from strongly interacting systems, offers a natural avenue for the experimental study of gravity physics.
A prominent example is the simulation of traversable wormholes through the wormhole teleportation protocol.
We develop the theoretical framework for computing the fidelity of wormhole teleportation in $N$-qubit systems.
- Score: 9.320330395541474
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid development of quantum science and technology is leading us into an era where quantum many-body systems can be comprehended through quantum simulations. Holographic duality, which states gravity and spacetime can emerge from strongly interacting systems, then offers a natural avenue for the experimental study of gravity physics without delving into experimentally infeasible high energies. A prominent example is the simulation of traversable wormholes through the wormhole teleportation protocol, attracting both theoretical and experimental attention. In this work, we develop the theoretical framework for computing the fidelity of wormhole teleportation in $N$-qubit systems with all-to-all interactions, quantified by mutual information and entanglement negativity. The main technique is the scramblon effective theory, which captures universal out-of-time-order correlations in generic chaotic systems. We clarify that strong couplings between the two systems are essential for simulating the probe limit of semi-classical traversable wormholes using strongly interacting systems with near-maximal chaos. However, the teleportation signal diminishes rapidly when reducing the system size $N$, requiring a large number of qubits to observe a sharp signature of emergent geometry by simulating the Sachdev-Ye-Kitaev model. This includes both the causal time-order of signals and the asymmetry of the teleportation signal for coupling with different signs. As a comparison, the teleportation signal increases when reducing $N$ in weakly interacting systems. We also analyze the fidelity of the generalized encoding scheme in fermionic string operators.
Related papers
- Trapped Ions as an Architecture for Quantum Computing [110.83289076967895]
We describe one of the most promising platforms for the construction of a universal quantum computer.
We discuss from the physics involved in trapping ions in electromagnetic potentials to the Hamiltonian engineering needed to generate a universal set of logic gates.
arXiv Detail & Related papers (2022-07-23T22:58:50Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Quantum simulations of interacting systems with broken time-reversal
symmetry [0.0]
We realize quantum simulations of interacting, time-reversal broken quantum systems in a universal trapped-ion quantum processor.
Our results open a path towards simulation of time-reversal broken many-body systems with a wide range of features and coupling geometries.
arXiv Detail & Related papers (2022-05-23T10:29:34Z) - Verifying quantum information scrambling dynamics in a fully
controllable superconducting quantum simulator [0.0]
We study the verified scrambling in a 1D spin chain by an analogue superconducting quantum simulator with the signs and values of individual driving and coupling terms fully controllable.
Our work demonstrates the superconducting system as a powerful quantum simulator.
arXiv Detail & Related papers (2021-12-21T13:41:47Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Simulation of Collective Neutrino Oscillations on a Quantum Computer [117.44028458220427]
We present the first simulation of a small system of interacting neutrinos using current generation quantum devices.
We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time.
arXiv Detail & Related papers (2021-02-24T20:51:25Z) - Many-body quantum teleportation via operator spreading in the
traversable wormhole protocol [1.1198195005311917]
Recent advances have uncovered an intrinsically many-body generalization of quantum teleportation, with an elegant and surprising connection to gravity.
Here, we propose and analyze a new mechanism for many-body quantum teleportation -- dubbed peaked-size teleportation.
We demonstrate the ubiquity of peaked-size teleportation, both analytically and numerically, across a diverse landscape of physical systems.
arXiv Detail & Related papers (2021-01-29T19:00:01Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Revival dynamics in a traversable wormhole [0.0]
We study the revival dynamics of signals sent between two quantum chaotic systems.
We find clear signatures of wormhole behavior.
For small $N$ we also observe revivals and show that they arise from a different, non-gravitational mechanism.
arXiv Detail & Related papers (2020-03-09T03:57:14Z) - Quantum Information Scrambling in a Superconducting Qutrit Processor [0.0]
Delocalization of quantum information in strongly-interacting many-body systems has recently begun to unite our understanding of black hole dynamics, transport in exotic non-Fermi liquids, and many-body analogs of quantum chaos.
We implement two-qutrit scrambling operations and embed them in a five-qutrit teleportation algorithm to measure the associated out-time-ordered correlation functions.
arXiv Detail & Related papers (2020-03-06T16:36:23Z) - Teleporting quantum information encoded in fermionic modes [62.997667081978825]
We consider teleportation of quantum information encoded in modes of a fermionic field.
In particular, one is forced to distinguish between single-mode entanglement swapping, and qubit teleportation with or without authentication.
arXiv Detail & Related papers (2020-02-19T14:15:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.