Subwavelength resolution using the near field of quantum emitters
- URL: http://arxiv.org/abs/2403.16907v1
- Date: Mon, 25 Mar 2024 16:19:26 GMT
- Title: Subwavelength resolution using the near field of quantum emitters
- Authors: Aziz Kolkiran,
- Abstract summary: We propose a novel, to the best of our knowledge, approach to superresolution optical imaging by combining quantum optics and near-field optics.
We demonstrate that the quantum interference effects of single-photon emitters, in conjunction with their near-field, result in a higher resolution of subwavelength structures than systems that are only quantum enhanced or only near-field enhanced.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel, to the best of our knowledge, approach to superresolution optical imaging by combining quantum optics and near-field optics. Our concept involves the utilization of single-photon quantum emitters to generate a stand-alone evanescent wave. We demonstrate that the quantum interference effects of single-photon emitters, in conjunction with their near-field, result in a higher resolution of subwavelength structures than systems that are only quantum enhanced or only near-field enhanced. We believe that nano-sized emitters could be employed to accomplish the goals of this research, taking into account the current progress in nanophotonics and quantum optics technology.
Related papers
- Multi-channel, tunable quantum photonic devices on fiber-integrated platforms [0.013980986259786221]
We present a breakthrough in achieving a multiple, tunable array of quantum photonic devices.
Our fiber-integrated quantum platform realizes a scalable and reliable single-photon array within a compact fiber chip at telecom wavelengths.
arXiv Detail & Related papers (2024-10-19T04:55:11Z) - Super-resolved snapshot hyperspectral imaging of solid-state quantum
emitters for high-throughput integrated quantum technologies [2.369149909203103]
We introduce the concept of hyperspectral imaging in quantum optics, for the first time, to address such a long-standing issue.
With the extracted quantum dot positions and emission wavelengths, surface-emitting quantum light sources and in-plane photonic circuits can be deterministically fabricated.
Our work is expected to change the landscape of integrated quantum photonic technology.
arXiv Detail & Related papers (2023-11-05T11:51:22Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - High-throughput quantum photonic devices emitting indistinguishable photons in the telecom C-band [28.279056210896716]
Single indistinguishable photons at telecom C-band wavelengths are essential for quantum networks and the future quantum internet.
We demonstrate the high- throughput fabrication of quantum-photonic integrated devices operating at C-band wavelengths based on epitaxial semiconductor quantum dots.
Further improvements in yield and coherence properties will pave the way for implementing single-photon non-linear devices and advanced quantum networks at telecom wavelengths.
arXiv Detail & Related papers (2023-04-05T15:39:22Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Nanoscale positioning approaches for integrating single epitaxial
quantum emitters with photonic nanostructures [2.7712083999951833]
We review the working principles of several nanoscale positioning methods and the most recent progress in this field.
A selection of representative device demonstrations with high-performance is presented.
The challenges in applying positioning techniques to different material systems and opportunities for using these approaches for realizing large-scale quantum photonic devices are discussed.
arXiv Detail & Related papers (2021-05-12T07:33:43Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Coupling colloidal quantum dots to gap waveguides [62.997667081978825]
coupling between single photon emitters and integrated photonic circuits is an emerging topic relevant for quantum information science and other nanophotonic applications.
We investigate the coupling between a hybrid system of colloidal quantum dots and propagating gap modes of a silicon nitride waveguide system.
arXiv Detail & Related papers (2020-03-30T21:18:27Z) - Hybrid device for quantum nanophotonics [0.0]
Single photons, entangled photons and quantum light in general have been coupled to integrated approaches coming from classical optics.
In this article, we describe our recent advances using elongated optical nano-fibers.
We also present our latest results on nanocrystals made of perovskites and discuss some of their quantum properties.
arXiv Detail & Related papers (2020-01-28T17:37:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.