GOLF: Goal-Oriented Long-term liFe tasks supported by human-AI collaboration
- URL: http://arxiv.org/abs/2403.17089v2
- Date: Wed, 17 Apr 2024 15:00:58 GMT
- Title: GOLF: Goal-Oriented Long-term liFe tasks supported by human-AI collaboration
- Authors: Ben Wang,
- Abstract summary: ChatGPT and similar large language models (LLMs) have revolutionized the human-AI interaction and information-seeking process.
This research extends the scope of LLM capabilities beyond routine task automation to support users in navigating long-term and significant life tasks.
- Score: 4.414024076524777
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advent of ChatGPT and similar large language models (LLMs) has revolutionized the human-AI interaction and information-seeking process. Leveraging LLMs as an alternative to search engines, users can now access summarized information tailored to their queries, significantly reducing the cognitive load associated with navigating vast information resources. This shift underscores the potential of LLMs in redefining information access paradigms. Drawing on the foundation of task-focused information retrieval and LLMs' task planning ability, this research extends the scope of LLM capabilities beyond routine task automation to support users in navigating long-term and significant life tasks. It introduces the GOLF framework (Goal-Oriented Long-term liFe tasks), which focuses on enhancing LLMs' ability to assist in significant life decisions through goal orientation and long-term planning. The methodology encompasses a comprehensive simulation study to test the framework's efficacy, followed by model and human evaluations to develop a dataset benchmark for long-term life tasks, and experiments across different models and settings. By shifting the focus from short-term tasks to the broader spectrum of long-term life goals, this research underscores the transformative potential of LLMs in enhancing human decision-making processes and task management, marking a significant step forward in the evolution of human-AI collaboration.
Related papers
- The LLM Effect: Are Humans Truly Using LLMs, or Are They Being Influenced By Them Instead? [60.01746782465275]
Large Language Models (LLMs) have shown capabilities close to human performance in various analytical tasks.
This paper investigates the efficiency and accuracy of LLMs in specialized tasks through a structured user study focusing on Human-LLM partnership.
arXiv Detail & Related papers (2024-10-07T02:30:18Z) - ET-Plan-Bench: Embodied Task-level Planning Benchmark Towards Spatial-Temporal Cognition with Foundation Models [39.606908488885125]
ET-Plan-Bench is a benchmark for embodied task planning using Large Language Models (LLMs)
It features a controllable and diverse set of embodied tasks varying in different levels of difficulties and complexities.
Our benchmark distinguishes itself as a large-scale, quantifiable, highly automated, and fine-grained diagnostic framework.
arXiv Detail & Related papers (2024-10-02T19:56:38Z) - Understanding the Human-LLM Dynamic: A Literature Survey of LLM Use in Programming Tasks [0.850206009406913]
Large Language Models (LLMs) are transforming programming practices, offering significant capabilities for code generation activities.
This paper focuses on their use in programming tasks, drawing insights from user studies that assess the impact of LLMs on programming tasks.
arXiv Detail & Related papers (2024-10-01T19:34:46Z) - LLM With Tools: A Survey [0.0]
This paper delves into the methodology,challenges, and developments in the realm of teaching LLMs to use external tools.
We introduce a standardized paradigm for tool integration guided by a series of functions that map user instructions to actionable plans.
Our exploration reveals the various challenges encountered, such as tool invocation timing, selection accuracy, and the need for robust reasoning processes.
arXiv Detail & Related papers (2024-09-24T14:08:11Z) - Learning to Plan for Retrieval-Augmented Large Language Models from Knowledge Graphs [59.76268575344119]
We introduce a novel framework for enhancing large language models' (LLMs) planning capabilities by using planning data derived from knowledge graphs (KGs)
LLMs fine-tuned with KG data have improved planning capabilities, better equipping them to handle complex QA tasks that involve retrieval.
arXiv Detail & Related papers (2024-06-20T13:07:38Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases.
We introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning.
Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks.
arXiv Detail & Related papers (2024-06-19T00:28:58Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
Large Language Models (LLMs) have presented impressive performance across several transformative tasks.
However, it is non-trivial to efficiently utilize large-scale cluster resources to develop LLMs.
We present an in-depth characterization study of a six-month LLM development workload trace collected from our GPU datacenter Acme.
arXiv Detail & Related papers (2024-03-12T13:31:14Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
Large Language Model (LLM) agents significantly extend the capabilities of standalone LLMs.
We propose a novel approach that decomposes the aforementioned capabilities into a planner, caller, and summarizer.
This modular framework facilitates individual updates and the potential use of smaller LLMs for building each capability.
arXiv Detail & Related papers (2024-01-14T16:17:07Z) - LgTS: Dynamic Task Sampling using LLM-generated sub-goals for
Reinforcement Learning Agents [10.936460061405157]
We propose LgTS (LLM-guided Teacher-Student learning), a novel approach that explores the planning abilities of LLMs.
Our approach does not assume access to a propreitary or a fine-tuned LLM, nor does it require pre-trained policies that achieve the sub-goals proposed by the LLM.
arXiv Detail & Related papers (2023-10-14T00:07:03Z) - ISR-LLM: Iterative Self-Refined Large Language Model for Long-Horizon
Sequential Task Planning [7.701407633867452]
Large Language Models (LLMs) offer the potential to enhance the generalizability as task-agnostic planners.
We introduce ISR-LLM, a novel framework that improves LLM-based planning through an iterative self-refinement process.
We show that ISR-LLM is able to achieve markedly higher success rates in task accomplishments compared to state-of-the-art LLM-based planners.
arXiv Detail & Related papers (2023-08-26T01:31:35Z) - Skill-based Meta-Reinforcement Learning [65.31995608339962]
We devise a method that enables meta-learning on long-horizon, sparse-reward tasks.
Our core idea is to leverage prior experience extracted from offline datasets during meta-learning.
arXiv Detail & Related papers (2022-04-25T17:58:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.