Thermodynamic and energetic constraints on transition probabilities of small-scale quantum systems
- URL: http://arxiv.org/abs/2409.00981v2
- Date: Mon, 31 Mar 2025 11:47:39 GMT
- Title: Thermodynamic and energetic constraints on transition probabilities of small-scale quantum systems
- Authors: Ludovico Tesser, Matteo Acciai, Christian Spånslätt, Inès Safi, Janine Splettstoesser,
- Abstract summary: We study the transition probabilities of a two-point measurement on a quantum system, initially prepared in a thermal state.<n>We find two independent constraints on the difference between transition probabilities when the system is prepared at different temperatures.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the transition probabilities of a two-point measurement on a quantum system, initially prepared in a thermal state. We find two independent constraints on the difference between transition probabilities when the system is prepared at different temperatures, which both turn out to be particularly restrictive when the measured quantum system is small. These bounds take the form of a thermodynamic and of an energetic constraint, as they are associated with the dissipated heat and with the absorbed energy required to increase or to reduce the temperature of the system. The derived constraints apply to arbitrary system Hamiltonians, including interactions or non-linear energy spectra. We show the relevance of these constraints for the special case where transitions are induced by energy or particle exchange in weakly coupled bipartite systems out of equilibrium. This example is of interest for a wide range of experimentally relevant systems, from molecular junctions to coupled cavities, and can be tested by, for instance, measuring the out-of-equilibrium tunneling current and its noise.
Related papers
- The Eigenstate Thermalization Hypothesis in a Quantum Point Contact Geometry [0.0]
It is known that the long-range quantum entanglement exhibited in free fermion systems is sufficient to "thermalize" a small subsystem.
We show that entanglement entropy of a subsystem connected by a small number of quantum point contacts is sub-extensive, scaling as the linear size of the subsystem.
arXiv Detail & Related papers (2025-01-06T15:19:17Z) - Quasiprobabilities in quantum thermodynamics and many-body systems: A tutorial [0.0]
We present the definition, interpretation and properties of the main quasiprobabilities known in the literature.
We illustrate the use of quasiprobabilities in quantum thermodynamics to describe the quantum statistics of work and heat.
arXiv Detail & Related papers (2024-03-25T19:22:57Z) - Nonequilibrium quantum heat transport between structured environments [0.0]
We apply the hierarchical equations of motion technique to analyze nonequilibrium heat transport in a spin-boson type model.
We find the heat current to be drastically modified at weak system-bath coupling.
Our analysis highlights a novel mechanism for controlling heat transport in nanoscale systems.
arXiv Detail & Related papers (2024-03-20T18:20:12Z) - Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Nonlocal thermoelectric detection of interaction and correlations in
edge states [62.997667081978825]
We propose the nonlocal thermoelectric response as a direct indicator of the presence of interactions, nonthermal states and the effect of correlations.
A setup with two controllable quantum point contacts allows thermoelectricity to monitor the interacting system thermalisation.
arXiv Detail & Related papers (2023-07-18T16:28:59Z) - Thermodynamics of adiabatic quantum pumping in quantum dots [50.24983453990065]
We consider adiabatic quantum pumping through a resonant level model, a single-level quantum dot connected to two fermionic leads.
We develop a self-contained thermodynamic description of this model accounting for the variation of the energy level of the dot and the tunnelling rates with the thermal baths.
arXiv Detail & Related papers (2023-06-14T16:29:18Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Heat transport and cooling performance in a nanomechanical system with
local and non local interactions [68.8204255655161]
We study heat transport through a one dimensional time-dependent nanomechanical system.
The system presents different stationary transport regimes depending on the driving frequency, temperature gradients and the degree of locality of the interactions.
arXiv Detail & Related papers (2022-02-21T12:03:54Z) - Unconventional pairing in few-fermion systems at finite temperature [0.0]
Two-component mixtures of fermionic particles confined in a one-dimensional harmonic trap are investigated.
Specific non-classical pairing correlations are analyzed in terms of the noise correlations.
It is shown that along with increasing temperature, any imbalanced system hosting Fulde-Ferrel-Larkin-Ovchinnikov pairs crossovers to a standard Bardeen-Cooper-Schrieffer one characterized by zero net momentum of resulting pairs.
arXiv Detail & Related papers (2022-02-15T18:37:04Z) - Energy fluctuation relations and repeated quantum measurements [4.724825031148412]
We discuss the statistical description in non-equilibrium regimes of energy fluctuations originated by the interaction between a quantum system and a measurement apparatus.
To properly quantify the information about energy fluctuations, both the exchanged heat probability density function and the corresponding characteristic function are derived and interpreted.
arXiv Detail & Related papers (2022-02-05T16:20:13Z) - Qubit thermodynamics far from equilibrium: two perspectives about the
nature of heat and work in the quantum regime [68.8204255655161]
We develop an alternative theoretical framework for the thermodynamic analysis of two-level systems.
We observe the appearance of a new term of work, which represents the energy cost of rotating the Bloch vector in presence of the external field that defines the local Hamiltonian.
In order to illustrate our findings we study, from both perspectives, matter-radiation interaction processes for two different systems.
arXiv Detail & Related papers (2021-03-16T09:31:20Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Quantum transient heat transport in the hyper-parametric oscillator [0.0]
We explore nonequilibrium quantum heat transport in nonlinear bosonic systems in the presence of a non-Kerr-type interaction.
Our findings may help in the manipulation of quantum states using the system's interactions to induce cooling.
arXiv Detail & Related papers (2020-11-05T05:05:36Z) - Analog of a quantum heat engine using a single-spin qubit [0.0]
A quantum two-level system with periodically modulated energy splitting could provide a minimal universal quantum heat machine.
We present the experimental realization and the theoretical description of such a two-level system as an impurity electron spin in a silicon tunnel field-effect transistor.
arXiv Detail & Related papers (2020-08-24T03:49:06Z) - $Large-scale$ thermalization, prethermalization and impact of the
temperature in the quench dynamics of two unequal Luttinger liquids [0.0]
We study the effect of a quantum quench between two tunnel coupled Tomonaga-Luttinger liquids (TLLs) with different speed of sound and interaction parameter.
We focus on correlation functions associated with the antisymmetric and symmetric combinations of the two TLLs.
The presence of different speeds of sound leads to multiple lightcones separating different decaying regimes.
arXiv Detail & Related papers (2020-06-29T14:46:34Z) - Ergotropy from coherences in an open quantum system [0.0]
We show that it is possible to have non-zero ergotropy in the steady-states of an open quantum system consisting of qubits.
Our results suggest that one can design a quantum battery that is charged by a dissipative thermal bath in the weak coupling regime.
arXiv Detail & Related papers (2020-05-18T07:03:39Z) - Non-destructively probing the thermodynamics of quantum systems with
qumodes [0.6144680854063939]
In quantum systems there is often a destruction of the system itself due to the means of measurement.
One approach to circumventing this is the use of ancillary probes that couple to the system under investigation.
We highlight means by which continuous variable quantum modes (qumodes) can be employed to probe the thermodynamics of quantum systems in and out of equilibrium.
arXiv Detail & Related papers (2017-07-13T17:57:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.