論文の概要: Exploring the Impact of the Output Format on the Evaluation of Large Language Models for Code Translation
- arxiv url: http://arxiv.org/abs/2403.17214v1
- Date: Mon, 25 Mar 2024 21:41:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 19:26:23.235387
- Title: Exploring the Impact of the Output Format on the Evaluation of Large Language Models for Code Translation
- Title(参考訳): コード翻訳のための大規模言語モデル評価における出力形式の影響を探る
- Authors: Marcos Macedo, Yuan Tian, Filipe R. Cogo, Bram Adams,
- Abstract要約: 我々は、11の人気のある命令付き大規模言語モデル(LLM)の出力を経験的に分析する。
この結果から,プロンプトエンジニアリングと正規表現の戦略的組み合わせにより,モデル生成出力からソースコードを効果的に抽出できることが示唆された。
- 参考スコア(独自算出の注目度): 8.81447711370817
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Code translation between programming languages is a long-existing and critical task in software engineering, facilitating the modernization of legacy systems, ensuring cross-platform compatibility, and enhancing software performance. With the recent advances in large language models (LLMs) and their applications to code translation, there is an increasing need for comprehensive evaluation of these models. In this study, we empirically analyze the generated outputs of eleven popular instruct-tuned LLMs with parameters ranging from 1B up to 46.7B on 3,820 translation pairs across five languages, including C, C++, Go, Java, and Python. Our analysis found that between 26.4% and 73.7% of code translations produced by our evaluated LLMs necessitate post-processing, as these translations often include a mix of code, quotes, and text rather than being purely source code. Overlooking the output format of these models can inadvertently lead to underestimation of their actual performance. This is particularly evident when evaluating them with execution-based metrics such as Computational Accuracy (CA). Our results demonstrate that a strategic combination of prompt engineering and regular expression can effectively extract the source code from the model generation output. In particular, our method can help eleven selected models achieve an average Code Extraction Success Rate (CSR) of 92.73%. Our findings shed light on and motivate future research to conduct more reliable benchmarks of LLMs for code translation.
- Abstract(参考訳): プログラミング言語間のコード翻訳は、ソフトウェア工学における長年の重要課題であり、レガシーシステムの近代化を促進し、クロスプラットフォームの互換性を確保し、ソフトウェアパフォーマンスを向上させる。
近年の大規模言語モデル(LLM)とそのコード翻訳への応用により,これらのモデルの包括的な評価の必要性が高まっている。
本研究では,C言語,C++言語,Go言語,Java言語,Python言語を含む5言語にまたがる3,820の翻訳ペアに対して,最大1Bから46.7Bまでのパラメータで,11のポピュラーな命令付きLPMの出力を経験的に分析した。
我々の分析によると、評価済みのLLMが生成するコード翻訳の26.4%から73.7%は後処理を必要としており、これらの翻訳には純粋にソースコードではなく、コード、引用、テキストが混在していることが多い。
これらのモデルの出力フォーマットを見渡すことは、必然的に実際のパフォーマンスの過小評価につながる可能性がある。
これは、計算精度(CA)のような実行ベースのメトリクスで評価する場合、特に顕著である。
この結果から,プロンプトエンジニアリングと正規表現の戦略的組み合わせにより,モデル生成出力からソースコードを効果的に抽出できることが示唆された。
特に,選択した11種類のモデルに対して平均コード抽出成功率(CSR)92.73%を達成するのに有効である。
コード翻訳のための LLM のより信頼性の高いベンチマークを行うため,今後の研究に光を当て,モチベーションを与えました。
関連論文リスト
- Large Language Models as Code Executors: An Exploratory Study [29.545321608864295]
本稿では,Large Language Models (LLM) をコードエグゼキュータとして探索する。
OpenAIのo1、GPT-4o、GPT-3.5、DeepSeek、Qwen-Coderなど、さまざまなLLMでこの実現可能性を調べています。
我々は,コードスニペットを行単位で処理し,弱いモデルの精度を平均7.22%向上させるIIP(Iterative Instruction Prompting)技術を導入する。
論文 参考訳(メタデータ) (2024-10-09T08:23:22Z) - What do Large Language Models Need for Machine Translation Evaluation? [12.42394213466485]
大規模言語モデル(LLM)は、微調整された多言語事前訓練言語モデルに匹敵する結果が得られる。
本稿では,LLMの機械翻訳品質を評価するために,ソース,参照,翻訳エラー,ガイドラインなどの翻訳情報が必要であるかを検討する。
論文 参考訳(メタデータ) (2024-10-04T09:50:45Z) - Large Language Models for cross-language code clone detection [3.5202378300682162]
言語間のコードクローン検出は、ソフトウェアエンジニアリングコミュニティで注目を集めている。
機械学習の大幅な進歩にインスパイアされた本論文では、言語間コードクローン検出を再考する。
論文 参考訳(メタデータ) (2024-08-08T12:57:14Z) - SpecTra: Enhancing the Code Translation Ability of Language Models by Generating Multi-Modal Specifications [17.60108067953814]
大規模言語モデル(LLM)は、コード翻訳の自動化作業にますます利用されている。
本稿では,新しい自己整合性フィルタを用いて,まず高品質な仕様を生成するマルチステージアプローチであるSpecTraを提案する。
論文 参考訳(メタデータ) (2024-05-28T20:48:30Z) - Code Needs Comments: Enhancing Code LLMs with Comment Augmentation [91.52444946362547]
本稿では、既存のコードに対するコメントを生成する新しいデータ拡張手法と、自然言語と相関の低いコードデータをフィルタリングするデータフィルタリング戦略を導入する。
我々は3つのコード中心の大規模言語モデルの実験を行い、2つの広く使われているプログラミングスキルベンチマークで一貫した性能向上を観察した。
論文 参考訳(メタデータ) (2024-02-20T13:56:38Z) - Large Language Model-Aware In-Context Learning for Code Generation [75.68709482932903]
大規模言語モデル(LLM)は、コード生成において印象的なコンテキスト内学習(ICL)能力を示している。
コード生成のためのLAIL (LLM-Aware In-context Learning) という新しい学習ベース選択手法を提案する。
論文 参考訳(メタデータ) (2023-10-15T06:12:58Z) - CodeFuse-13B: A Pretrained Multi-lingual Code Large Language Model [58.127534002232096]
本稿では,オープンソースの事前学習型LLMであるCodeFuse-13Bを紹介する。
英語と中国語の両方のプロンプトによるコード関連のタスク用に特別に設計されている。
CodeFuseは、高品質な事前トレーニングデータセットを利用することで、その効果を達成する。
論文 参考訳(メタデータ) (2023-10-10T02:38:44Z) - L2CEval: Evaluating Language-to-Code Generation Capabilities of Large
Language Models [102.00201523306986]
大規模言語モデル(LLM)の言語間コード生成能力を体系的に評価するL2CEvalを提案する。
モデルのサイズ、事前学習データ、命令チューニング、異なるプロンプトメソッドなど、それらのパフォーマンスに影響を与える可能性のある要因を分析する。
モデル性能の評価に加えて、モデルに対する信頼性校正を計測し、出力プログラムの人間による評価を行う。
論文 参考訳(メタデータ) (2023-09-29T17:57:00Z) - LEVER: Learning to Verify Language-to-Code Generation with Execution [64.36459105535]
本稿では,プログラムの実行結果の検証を学習することで,言語からコードへの生成を改善するシンプルな手法であるLEVERを提案する。
具体的には、LLMからサンプリングされたプログラムが、自然言語入力、プログラム自体とその実行結果に基づいて正しいか否かを判定するために、検証者を訓練する。
LEVER はベースコード LLMs (4.6% から 10.9% まで) を継続的に改善し、それらすべてに対して新しい最先端の結果を得る。
論文 参考訳(メタデータ) (2023-02-16T18:23:22Z) - Summarize and Generate to Back-translate: Unsupervised Translation of
Programming Languages [86.08359401867577]
バックトランスレーションは、並列データがほとんど、あるいは全く利用できない場合のニューラルマシン翻訳の有効性で広く知られている。
コード要約と生成による逆翻訳を提案する。
提案手法は最先端の手法と競合することを示す。
論文 参考訳(メタデータ) (2022-05-23T08:20:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。