Exact block encoding of imaginary time evolution with universal quantum neural networks
- URL: http://arxiv.org/abs/2403.17273v1
- Date: Mon, 25 Mar 2024 23:35:04 GMT
- Title: Exact block encoding of imaginary time evolution with universal quantum neural networks
- Authors: Ermal Rrapaj, Evan Rule,
- Abstract summary: We generate quantum neural networks capable of representing the exact thermal states of all many-body qubit Hamiltonians.
Networks can be readily implemented on quantum hardware via mid-circuit measurements of auxiliary qubits.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a constructive approach to generate quantum neural networks capable of representing the exact thermal states of all many-body qubit Hamiltonians. The Trotter expansion of the imaginary-time propagator is implemented through an exact block encoding by means of a unitary, restricted Boltzmann machine architecture. Marginalization over the hidden-layer neurons (auxiliary qubits) creates the non-unitary action on the visible layer. Then, we introduce a unitary deep Boltzmann machine architecture, in which the hidden-layer qubits are allowed to couple laterally to other hidden qubits. We prove that this wave function ansatz is closed under the action of the imaginary-time propagator and, more generally, can represent the action of a universal set of quantum gate operations. We provide analytic expressions for the coefficients for both architectures, thus enabling exact network representations of thermal states without stochastic optimization of the network parameters. In the limit of large imaginary time, the ansatz yields the ground state of the system. The number of qubits grows linearly with the system size and total imaginary time for a fixed interaction order. Both networks can be readily implemented on quantum hardware via mid-circuit measurements of auxiliary qubits. If only one auxiliary qubit is measured and reset, the circuit depth scales linearly with imaginary time and system size, while the width is constant. Alternatively, one can employ a number of auxiliary qubits linearly proportional to the system size, and circuit depth grows linearly with imaginary time only.
Related papers
- Deterministic generation of a 20-qubit two-dimensional photonic cluster state [87.34681687753141]
We present a device capable of emitting large-scale entangled microwave photonic states in a two dimensional ladder structure.
By interleaving two-qubit gates with controlled photon emission, we generate 2 x n grids of time- and frequency-multiplexed cluster states of itinerant microwave photons.
We measure a signature of localizable entanglement across up to 20 photonic qubits.
arXiv Detail & Related papers (2024-09-10T16:25:24Z) - Characterizing randomness in parameterized quantum circuits through expressibility and average entanglement [39.58317527488534]
Quantum Circuits (PQCs) are still not fully understood outside the scope of their principal application.
We analyse the generation of random states in PQCs under restrictions on the qubits connectivities.
We place a connection between how steep is the increase on the uniformity of the distribution of the generated states and the generation of entanglement.
arXiv Detail & Related papers (2024-05-03T17:32:55Z) - Neural network based time-resolved state tomography of superconducting qubits [9.775471166288503]
We introduce a time-resolved neural network capable of full-state tomography for individual qubits.
This scalable approach, with a dedicated module per qubit, mitigated readout error by an order of magnitude under low signal-to-noise ratios.
arXiv Detail & Related papers (2023-12-13T08:09:12Z) - Parallel-in-time quantum simulation via Page and Wootters quantum time [0.0]
We present quantum algorithms for parallel-in-time simulations inspired by the Page and Wooters formalism.
We show that our algorithms can compute temporal properties over $N$ different times of many-body systems.
We rigorously prove that the entanglement created between the system qubits and the clock qubits has operational meaning.
arXiv Detail & Related papers (2023-08-24T17:32:41Z) - Pipeline quantum processor architecture for silicon spin qubits [0.0]
Noisy intermediate-scale quantum (NISQ) devices seek to achieve quantum advantage over classical systems.
We propose a NISQ processor architecture using a qubit pipeline' in which all run-time control is applied globally.
This is achieved by progressing qubit states through a layered physical array of structures.
arXiv Detail & Related papers (2023-06-13T10:35:01Z) - Pairwise-parallel entangling gates on orthogonal modes in a trapped-ion
chain [0.0]
parallel operations are important for both near-term quantum computers and larger-scale fault-tolerant machines.
We propose and implement a pairwise-parallel gate scheme on a trapped-ion quantum computer.
We demonstrate the utility of this scheme by creating a GHZ state in one step using parallel gates with one overlapping qubit.
arXiv Detail & Related papers (2023-02-17T21:12:14Z) - Holographic quantum simulation of entanglement renormalization circuits [14.385064176392595]
Current noisy quantum computers are limited to tens of qubits.
With the technique of holographic quantum simulation, a $D$-dimensional system can be simulated with a $Drm -1$-dimensional subset of qubits.
arXiv Detail & Related papers (2022-03-02T05:58:19Z) - A quantum processor based on coherent transport of entangled atom arrays [44.62475518267084]
We show a quantum processor with dynamic, nonlocal connectivity, in which entangled qubits are coherently transported in a highly parallel manner.
We use this architecture to realize programmable generation of entangled graph states such as cluster states and a 7-qubit Steane code state.
arXiv Detail & Related papers (2021-12-07T19:00:00Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
We show that conditions amenable to classical trainability via gradient descent coincide with those necessary for efficiently solving quantum linear systems.
We numerically demonstrate that the MNIST image dataset satisfies such conditions.
We provide empirical evidence for $O(log n)$ training of a convolutional neural network with pooling.
arXiv Detail & Related papers (2021-07-19T23:41:03Z) - Deep Neural Network Discrimination of Multiplexed Superconducting Qubit
States [39.26291658500249]
We present multi-qubit readout using neural networks as state discriminators.
We find that fully-connected feed neural networks increase the qubit-state-assignment fidelity for our system.
arXiv Detail & Related papers (2021-02-24T19:00:00Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.