Long-ranged gates in quantum computation architectures with limited connectivity
- URL: http://arxiv.org/abs/2507.08936v1
- Date: Fri, 11 Jul 2025 18:00:08 GMT
- Title: Long-ranged gates in quantum computation architectures with limited connectivity
- Authors: Wolfgang Dür,
- Abstract summary: We show how to efficiently split the role of qubits into data and entanglement-generation qubits.<n>We also show that our approach is applicable in existing superconducting quantum computation architectures.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a quantum computation architecture based on geometries with nearest-neighbor interactions, including e.g. planar structures. We show how to efficiently split the role of qubits into data and entanglement-generation qubits. Multipartite entangled states, e.g. 2D cluster states, are generated among the latter, and flexibly transformed via mid-circuit measurements to multiple, long-ranged Bell states, which are used to perform several two-qubit gates in parallel on data qubits. We introduce planar architectures with $n$ data and $n$ auxiliary qubits that allow one to perform $O(\sqrt n)$ long-ranged two-qubit gates simultaneously, with only one round of nearest neighbor gates and one round of mid-circuit measurements. We also show that our approach is applicable in existing superconducting quantum computation architectures, with only a constant overhead.
Related papers
- Resource Analysis of Low-Overhead Transversal Architectures for Reconfigurable Atom Arrays [38.6948808036416]
We present a low-overhead architecture that supports the layout and resource estimation of large-scale fault-tolerant quantum algorithms.<n>We find that a 2048-bit RSA factoring can be executed with 19 million qubits in 5.6 days, for 1 ms QEC cycle times.
arXiv Detail & Related papers (2025-05-21T18:00:18Z) - Roadmap to fault tolerant quantum computation using topological qubit arrays [36.987470905062736]
We describe a device roadmap towards a fault-tolerant quantum computing architecture based on noise-resilient, topologically protected Majorana-based qubits.<n>Our roadmap encompasses four generations of devices: a single-qubit device that enables a measurement-based qubit benchmarking protocol; a two-qubit device that uses measurement-based braiding to perform single-qubit Clifford operations; and an eight-qubit device that can be used to show an improvement of a two-qubit operation when performed on logical qubits.
arXiv Detail & Related papers (2025-02-17T19:00:10Z) - Route-Forcing: Scalable Quantum Circuit Mapping for Scalable Quantum Computing Architectures [41.39072840772559]
Route-Forcing is a quantum circuit mapping algorithm that shows an average speedup of $3.7times$.
We present a quantum circuit mapping algorithm that shows an average speedup of $3.7times$ compared to the state-of-the-art scalable techniques.
arXiv Detail & Related papers (2024-07-24T14:21:41Z) - Compiling Quantum Circuits for Dynamically Field-Programmable Neutral Atoms Array Processors [5.012570785656963]
Dynamically field-programmable qubit arrays (DPQA) have emerged as a promising platform for quantum information processing.
In this paper, we consider a DPQA architecture that contains multiple arrays and supports 2D array movements.
We show that our DPQA-based compiled circuits feature reduced scaling overhead compared to a grid fixed architecture.
arXiv Detail & Related papers (2023-06-06T08:13:10Z) - Mapping quantum circuits to modular architectures with QUBO [3.0148208709026005]
In multi-core architectures, it is crucial to minimize the amount of communication between cores when executing an algorithm.
We propose for the first time a Quadratic Unconstrained Binary Optimization technique to encode the problem and the solution.
Our method showed promising results and performed exceptionally well with very dense and highly-parallelized circuits.
arXiv Detail & Related papers (2023-05-11T09:45:47Z) - Efficient parallelization of quantum basis state shift [0.0]
We optimize the state shift algorithm by incorporating the shift in different directions in parallel.
This provides a significant reduction in the depth of the quantum circuit in comparison to the currently known methods.
We focus on the one-dimensional and periodic shift, but note that the method can be extended to more complex cases.
arXiv Detail & Related papers (2023-04-04T11:01:08Z) - Universal qudit gate synthesis for transmons [44.22241766275732]
We design a superconducting qudit-based quantum processor.
We propose a universal gate set featuring a two-qudit cross-resonance entangling gate.
We numerically demonstrate the synthesis of $rm SU(16)$ gates for noisy quantum hardware.
arXiv Detail & Related papers (2022-12-08T18:59:53Z) - Synthesis of and compilation with time-optimal multi-qubit gates [0.46180371154032884]
We develop a class of entangling multi-qubit gates for a quantum computing platform with fixed Ising-type interaction with all-to-all connectivity.
We numerically demonstrate that the total multi-qubit gate time scales approximately linear in the number of qubits.
arXiv Detail & Related papers (2022-06-13T18:00:04Z) - A quantum processor based on coherent transport of entangled atom arrays [44.62475518267084]
We show a quantum processor with dynamic, nonlocal connectivity, in which entangled qubits are coherently transported in a highly parallel manner.
We use this architecture to realize programmable generation of entangled graph states such as cluster states and a 7-qubit Steane code state.
arXiv Detail & Related papers (2021-12-07T19:00:00Z) - 2D Qubit Placement of Quantum Circuits using LONGPATH [1.6631602844999722]
Two algorithms are proposed to optimize the number of SWAP gates in any arbitrary quantum circuit.
Our approach has a significant reduction in number of SWAP gates in 1D and 2D NTC architecture.
arXiv Detail & Related papers (2020-07-14T04:09:52Z) - Time-Sliced Quantum Circuit Partitioning for Modular Architectures [67.85032071273537]
Current quantum computer designs will not scale.
To scale beyond small prototypes, quantum architectures will likely adopt a modular approach with clusters of tightly connected quantum bits and sparser connections between clusters.
We exploit this clustering and the statically-known control flow of quantum programs to create tractable partitionings which map quantum circuits to modular physical machines one time slice at a time.
arXiv Detail & Related papers (2020-05-25T17:58:44Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.