Sparse Mixture-of-Experts for Compositional Generalization: Empirical Evidence and Theoretical Foundations of Optimal Sparsity
- URL: http://arxiv.org/abs/2410.13964v2
- Date: Sun, 15 Jun 2025 03:25:56 GMT
- Title: Sparse Mixture-of-Experts for Compositional Generalization: Empirical Evidence and Theoretical Foundations of Optimal Sparsity
- Authors: Jinze Zhao, Peihao Wang, Junjie Yang, Ruisi Cai, Gaowen Liu, Jayanth Srinivasa, Ramana Rao Kompella, Yingbin Liang, Zhangyang Wang,
- Abstract summary: This study investigates the relationship between task complexity and optimal sparsity in SMoE models.<n>We show that the optimal sparsity lies between minimal activation (1-2 experts) and full activation, with the exact number scaling proportionally to task complexity.
- Score: 89.81738321188391
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sparse Mixture-of-Experts (SMoE) architectures have gained prominence for their ability to scale neural networks, particularly transformers, without a proportional increase in computational cost. Despite their success, their role in compositional generalization, i.e., adapting to novel combinations of known components, remains under-explored. This study challenges the assumption that minimal expert activation suffices for task generalization and investigates the relationship between task complexity and optimal sparsity in SMoE models. Through empirical evaluations on the SRAVEN symbolic reasoning task and the SKILL-MIX benchmark, we demonstrate that (i) the number of activated experts consistently increases with the perceived task difficulty to maintain performance; and (ii) the optimal number of activated experts scales proportionally with task complexity. Our theoretical analysis derives a scaling law for optimal sparsity by balancing approximation and estimation errors, revealing alignment with empirical observations. We formally show that the optimal sparsity lies between minimal activation (1-2 experts) and full activation, with the exact number scaling proportionally to task complexity and further influenced by the size of the training data and the complexity of the model. These findings offer practical insights for designing SMoE models that achieve computational efficiency while enabling robust compositional generalization.
Related papers
- A Theory of Inference Compute Scaling: Reasoning through Directed Stochastic Skill Search [15.387256204743407]
Large language models (LLMs) demand considerable computational, energy, and financial resources during both training and deployment.<n>Inference costs now represent a significant and growing component of the overall resource burden.<n>We introduce directed skill search (DS3), a general framework that represents inference as expressive over a learned skill graph.
arXiv Detail & Related papers (2025-06-10T14:47:48Z) - Model Selection for Gaussian-gated Gaussian Mixture of Experts Using Dendrograms of Mixing Measures [24.865197779389323]
Mixture of Experts (MoE) models constitute a widely utilized class of ensemble learning approaches in statistics and machine learning.<n>We introduce a novel extension to Gaussian-gated MoE models that enables consistent estimation of the true number of mixture components.<n> Experimental results on synthetic data demonstrate the effectiveness of the proposed method in accurately recovering the number of experts.
arXiv Detail & Related papers (2025-05-19T12:41:19Z) - ExpertRAG: Efficient RAG with Mixture of Experts -- Optimizing Context Retrieval for Adaptive LLM Responses [0.0]
ExpertRAG is a novel theoretical framework that integrates Mixture-of-Experts (MoE) architectures with Retrieval Augmented Generation (RAG)<n>We propose a dynamic retrieval gating mechanism coupled with expert routing, enabling the model to selectively consult an external knowledge store or rely on specialized internal experts.<n>We derive formulae to quantify the expected computational cost savings from selective retrieval and the capacity gains from sparse expert utilization.
arXiv Detail & Related papers (2025-03-23T17:26:23Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
This paper proposes DSMoE, a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks.<n>We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge.<n>Experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches.
arXiv Detail & Related papers (2025-02-18T02:37:26Z) - Complexity Experts are Task-Discriminative Learners for Any Image Restoration [80.46313715427928]
We introduce complexity experts" -- flexible expert blocks with varying computational complexity and receptive fields.
This preference effectively drives task-specific allocation, assigning tasks to experts with the appropriate complexity.
The proposed MoCE-IR model outperforms state-of-the-art methods, affirming its efficiency and practical applicability.
arXiv Detail & Related papers (2024-11-27T15:58:07Z) - CartesianMoE: Boosting Knowledge Sharing among Experts via Cartesian Product Routing in Mixture-of-Experts [36.385301311200905]
Mixture-of-Experts (MoE) models address that by allowing the model size to grow without substantially raising training or inference costs.
MoE models face challenges regarding knowledge sharing among experts, making their performance somehow sensitive to routing accuracy.
In this paper, we propose CartesianMoE, which implements more effective knowledge sharing among experts in more like a multiplication'' manner.
arXiv Detail & Related papers (2024-10-21T14:55:59Z) - AT-MoE: Adaptive Task-planning Mixture of Experts via LoRA Approach [0.6906005491572401]
This paper introduces the Adaptive Task-planing Mixture of Experts(AT-MoE) architecture.
We first train task-specific experts via LoRA approach to enhance problem-solving capabilities and interpretability in specialized areas.
We then introduce a layer-wise adaptive grouped routing module that optimize module fusion based on complex task instructions.
arXiv Detail & Related papers (2024-10-12T13:03:15Z) - Retraining-Free Merging of Sparse Mixture-of-Experts via Hierarchical Clustering [14.858134039539697]
We propose Hierarchical Clustering for Sparsely activated Mixture of Experts (HC-SMoE)
HC-SMoE is a task-agnostic expert merging framework that reduces SMoE model parameters without retraining.
We validate our approach through extensive experiments on eight zero-shot language tasks and demonstrate its effectiveness in large-scale SMoE models such as Qwen and Mixtral.
arXiv Detail & Related papers (2024-10-11T07:36:14Z) - Quantifying Generalization Complexity for Large Language Models [31.721781613271066]
We introduce Scylla, a dynamic evaluation framework that quantitatively measures the generalization abilities of large language models.
Scylla disentangles generalization from memorization via assessing model performance on both in-distribution (ID) and out-of-distribution (OOD) data.
We benchmark 28LLMs including both open-sourced models such as LLaMA and Qwen families, and close-sourced models like Claude and GPT.
arXiv Detail & Related papers (2024-10-02T17:25:37Z) - Diversifying the Expert Knowledge for Task-Agnostic Pruning in Sparse Mixture-of-Experts [75.85448576746373]
We propose a method of grouping and pruning similar experts to improve the model's parameter efficiency.
We validate the effectiveness of our method by pruning three state-of-the-art MoE architectures.
The evaluation shows that our method outperforms other model pruning methods on a range of natural language tasks.
arXiv Detail & Related papers (2024-07-12T17:25:02Z) - SEER-MoE: Sparse Expert Efficiency through Regularization for Mixture-of-Experts [49.01990048827639]
We introduce SEER-MoE, a framework for reducing both the memory footprint and compute requirements of pre-trained MoE models.
The first stage involves pruning the total number of experts using a heavy-hitters counting guidance, while the second stage employs a regularization-based fine-tuning strategy to recover accuracy loss.
Our empirical studies demonstrate the effectiveness of our method, resulting in a sparse MoEs model optimized for inference efficiency with minimal accuracy trade-offs.
arXiv Detail & Related papers (2024-04-07T22:13:43Z) - Generalization Error Analysis for Sparse Mixture-of-Experts: A Preliminary Study [65.11303133775857]
Mixture-of-Experts (MoE) computation amalgamates predictions from several specialized sub-models (referred to as experts)
Sparse MoE selectively engages only a limited number, or even just one expert, significantly reducing overhead while empirically preserving, and sometimes even enhancing, performance.
arXiv Detail & Related papers (2024-03-26T05:48:02Z) - Harder Tasks Need More Experts: Dynamic Routing in MoE Models [58.18526590138739]
We introduce a novel dynamic expert selection framework for Mixture of Experts (MoE) models.
Our method dynamically selects experts based on the confidence level in expert selection for each input.
arXiv Detail & Related papers (2024-03-12T13:41:15Z) - HyperMoE: Towards Better Mixture of Experts via Transferring Among Experts [25.504602853436047]
Mixture of Experts (MoE) for language models has been proven effective in augmenting the capacity of models by dynamically routing each input token to a specific subset of experts for processing.
We propose HyperMoE, a novel MoE framework built upon Hypernetworks.
This framework integrates the computational processes of MoE with the concept of knowledge transferring in multi-task learning.
arXiv Detail & Related papers (2024-02-20T02:09:55Z) - Omni-SMoLA: Boosting Generalist Multimodal Models with Soft Mixture of Low-rank Experts [74.40198929049959]
Large multi-modal models (LMMs) exhibit remarkable performance across numerous tasks.
generalist LMMs often suffer from performance degradation when tuned over a large collection of tasks.
We propose Omni-SMoLA, an architecture that uses the Soft MoE approach to mix many multimodal low rank experts.
arXiv Detail & Related papers (2023-12-01T23:04:27Z) - Estimating Koopman operators with sketching to provably learn large
scale dynamical systems [37.18243295790146]
The theory of Koopman operators allows to deploy non-parametric machine learning algorithms to predict and analyze complex dynamical systems.
We boost the efficiency of different kernel-based Koopman operator estimators using random projections.
We establish non error bounds giving a sharp characterization of the trade-offs between statistical learning rates and computational efficiency.
arXiv Detail & Related papers (2023-06-07T15:30:03Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Mod-Squad: Designing Mixture of Experts As Modular Multi-Task Learners [74.92558307689265]
We propose Mod-Squad, a new model that is Modularized into groups of experts (a 'Squad')
We optimize this matching process during the training of a single model.
Experiments on the Taskonomy dataset with 13 vision tasks and the PASCAL-Context dataset with 5 vision tasks show the superiority of our approach.
arXiv Detail & Related papers (2022-12-15T18:59:52Z) - MoEC: Mixture of Expert Clusters [93.63738535295866]
Sparsely Mixture of Experts (MoE) has received great interest due to its promising scaling capability with affordable computational overhead.
MoE converts dense layers into sparse experts, and utilizes a gated routing network to make experts conditionally activated.
However, as the number of experts grows, MoE with outrageous parameters suffers from overfitting and sparse data allocation.
arXiv Detail & Related papers (2022-07-19T06:09:55Z) - Multi-task Learning of Order-Consistent Causal Graphs [59.9575145128345]
We consider the problem of discovering $K related Gaussian acyclic graphs (DAGs)
Under multi-task learning setting, we propose a $l_1/l$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models.
We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order.
arXiv Detail & Related papers (2021-11-03T22:10:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.