論文の概要: The Privacy Policy Permission Model: A Unified View of Privacy Policies
- arxiv url: http://arxiv.org/abs/2403.17414v1
- Date: Tue, 26 Mar 2024 06:12:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 16:36:05.423142
- Title: The Privacy Policy Permission Model: A Unified View of Privacy Policies
- Title(参考訳): プライバシポリシの許可モデル:プライバシポリシの統一ビュー
- Authors: Maryam Majedi, Ken Barker,
- Abstract要約: プライバシポリシ(英: privacy policy)とは、組織がどのようにクライアントのデータを収集し、利用し、開示し、保持するかを指定するステートメントのセットである。
ほとんどのプライバシポリシには、データプロバイダの情報の使用方法に関する明確で完全な説明が欠けている。
本稿では,プライバシーポリシーの統一的かつ理解しやすい表現を提供するプライバシポリシ許可モデル(PPPM)を提案する。
- 参考スコア(独自算出の注目度): 0.5371337604556311
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Organizations use privacy policies to communicate their data collection practices to their clients. A privacy policy is a set of statements that specifies how an organization gathers, uses, discloses, and maintains a client's data. However, most privacy policies lack a clear, complete explanation of how data providers' information is used. We propose a modeling methodology, called the Privacy Policy Permission Model (PPPM), that provides a uniform, easy-to-understand representation of privacy policies, which can accurately and clearly show how data is used within an organization's practice. Using this methodology, a privacy policy is captured as a diagram. The diagram is capable of highlighting inconsistencies and inaccuracies in the privacy policy. The methodology supports privacy officers in properly and clearly articulating an organization's privacy policy.
- Abstract(参考訳): 企業はプライバシポリシを使用して、データ収集のプラクティスをクライアントに伝える。
プライバシポリシ(英: privacy policy)とは、組織がどのようにクライアントのデータを収集し、利用し、開示し、保持するかを指定するステートメントのセットである。
しかしながら、ほとんどのプライバシポリシには、データプロバイダの情報の使用方法に関する明確で完全な説明が欠けている。
プライバシポリシ許可モデル(PPPM)と呼ばれるモデリング手法を提案する。プライバシポリシの統一的で理解しやすい表現を提供する。
この手法を用いて、プライバシーポリシーを図として捉えます。
この図は、プライバシーポリシーの不整合と不正確な点を強調します。
この方法論は、組織のプライバシポリシーを適切に明確に記述する上で、プライバシオフィサーを支援する。
関連論文リスト
- Differential Privacy Overview and Fundamental Techniques [63.0409690498569]
この章は、"Differential Privacy in Artificial Intelligence: From Theory to Practice"という本の一部である。
まず、データのプライバシ保護のためのさまざまな試みについて説明し、その失敗の場所と理由を強調した。
次に、プライバシ保護データ分析の領域を構成する重要なアクター、タスク、スコープを定義する。
論文 参考訳(メタデータ) (2024-11-07T13:52:11Z) - PrivacyLens: Evaluating Privacy Norm Awareness of Language Models in Action [54.11479432110771]
PrivacyLensは、プライバシに敏感な種子を表現的なヴィグネットに拡張し、さらにエージェントの軌跡に拡張するために設計された新しいフレームワークである。
プライバシの文献とクラウドソーシングされたシードに基づいて、プライバシの規範のコレクションをインスタンス化する。
GPT-4やLlama-3-70Bのような最先端のLMは、プライバシー強化の指示が出されたとしても、機密情報を25.68%、38.69%のケースでリークしている。
論文 参考訳(メタデータ) (2024-08-29T17:58:38Z) - Collection, usage and privacy of mobility data in the enterprise and public administrations [55.2480439325792]
個人のプライバシーを守るためには、匿名化などのセキュリティ対策が必要である。
本研究では,現場における実践の洞察を得るために,専門家によるインタビューを行った。
我々は、一般的には最先端の差分プライバシー基準に準拠しない、使用中のプライバシー強化手法を調査した。
論文 参考訳(メタデータ) (2024-07-04T08:29:27Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
差分プライバシ(DP)は、モデルが特定のプライバシユニットで「ほとんど区別できない」ことを保証することで、有望なソリューションを提供する。
ユーザ間でのプライバシー保護の確保に必要なアプリケーションによって動機づけられたユーザレベルのDPについて検討する。
論文 参考訳(メタデータ) (2024-06-20T13:54:32Z) - Legally Binding but Unfair? Towards Assessing Fairness of Privacy Policies [0.0]
プライバシーポリシーは、データ保護の権利についてデータ被験者に通知し、データ管理の実践を説明することが期待されている。
これは、プライバシーポリシーが公正な方法で書かれており、例えば、分極項を使用しない、特定の教育を必要としない、あるいは特定の社会的背景を仮定しない、といったことを意味している。
我々は,基本的法的資料と公正性研究から,情報的公正性,表現的公正性,倫理的・道徳性がプライバシポリシにどのように関係しているかを識別する。
テキスト統計,言語学的手法,人工知能に基づいて,これらの公平度次元におけるポリシーを自動評価するオプションを提案する。
論文 参考訳(メタデータ) (2024-03-12T22:53:32Z) - PLUE: Language Understanding Evaluation Benchmark for Privacy Policies
in English [77.79102359580702]
プライバシポリシ言語理解評価ベンチマークは,プライバシポリシ言語理解を評価するマルチタスクベンチマークである。
また、プライバシポリシの大規模なコーパスを収集し、プライバシポリシドメイン固有の言語モデル事前トレーニングを可能にします。
ドメイン固有の連続的な事前トレーニングは、すべてのタスクでパフォーマンスを改善することを実証します。
論文 参考訳(メタデータ) (2022-12-20T05:58:32Z) - Exploring Consequences of Privacy Policies with Narrative Generation via
Answer Set Programming [0.0]
プライバシポリシの形式化にAnswer Set Programming(ASP)を使用するフレームワークを提案する。
ASP.NETは、エンドユーザがアクターの観点からポリシーの結果を前方にシミュレートすることを可能にする。
本稿では,健康保険の可搬性と説明責任法(Health Insurance Portability and Accountability Act)の事例を通じて,様々な方法でシステムを利用する方法を紹介する。
論文 参考訳(メタデータ) (2022-12-13T16:44:46Z) - Compliance Checking with NLI: Privacy Policies vs. Regulations [0.0]
我々は、自然言語推論技術を用いて、大企業の選択したプライバシーポリシーのセクションとプライバシー規制を比較します。
本モデルでは,BiLSTMのアテンション機構とともに,事前学習した埋め込みを用いている。
論文 参考訳(メタデータ) (2022-03-01T17:27:16Z) - Detecting Compliance of Privacy Policies with Data Protection Laws [0.0]
プライバシーポリシーは、しばしば理解が難しい広範囲の法的用語で書かれる。
我々は、さまざまなデータ保護法に基づきプライバシーポリシーを分析するフレームワークを提供することで、このギャップを埋めることを目指している。
このようなツールを使用することで、ユーザーは自分の個人データがどのように管理されているかを理解することができます。
論文 参考訳(メタデータ) (2021-02-21T09:15:15Z) - The Challenges and Impact of Privacy Policy Comprehension [0.0]
本稿では、避けられないシンプルなプライバシーポリシーのプライバシーフレンドリさを実験的に操作した。
参加者の半数は、この透明なプライバシーポリシーさえ誤解している。
このような落とし穴を緩和するため、私たちはインフォームドコンセントの品質を向上させる設計勧告を提示します。
論文 参考訳(メタデータ) (2020-05-18T14:16:48Z) - PGLP: Customizable and Rigorous Location Privacy through Policy Graph [68.3736286350014]
我々はPGLPと呼ばれる新しい位置プライバシーの概念を提案し、カスタマイズ可能で厳格なプライバシー保証を備えたプライベートロケーションをリリースするためのリッチなインターフェースを提供する。
具体的には,ユーザの位置プライバシー要件を,表現的かつカスタマイズ可能なテキスト配置ポリシーグラフを用いて形式化する。
第3に、位置露光の検出、ポリシーグラフの修復、およびカスタマイズ可能な厳格な位置プライバシーを備えたプライベートな軌跡リリースをパイプライン化する、プライベートな位置トレースリリースフレームワークを設計する。
論文 参考訳(メタデータ) (2020-05-04T04:25:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。