論文の概要: MA4DIV: Multi-Agent Reinforcement Learning for Search Result Diversification
- arxiv url: http://arxiv.org/abs/2403.17421v1
- Date: Tue, 26 Mar 2024 06:34:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 16:26:20.324297
- Title: MA4DIV: Multi-Agent Reinforcement Learning for Search Result Diversification
- Title(参考訳): MA4DIV:検索結果の多様化のためのマルチエージェント強化学習
- Authors: Yiqun Chen, Jiaxin Mao, Yi Zhang, Dehong MA, Long Xia, Jun Fan, Daiting Shi, Zhicong Cheng, Dawei Yin,
- Abstract要約: 我々は,MARL(Multi-Agent reinforcement learning)を検索結果のDIVersity(MA4DIV)に導入する。
このアプローチでは、各文書はエージェントであり、検索結果の多様化は複数のエージェント間の協調的なタスクとしてモデル化される。
我々は,MA4DIVが産業規模データセット上の既存のベースラインよりも有効性と効率の両面で大幅に向上していることを示す。
- 参考スコア(独自算出の注目度): 31.486100197084465
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The objective of search result diversification (SRD) is to ensure that selected documents cover as many different subtopics as possible. Existing methods primarily utilize a paradigm of "greedy selection", i.e., selecting one document with the highest diversity score at a time. These approaches tend to be inefficient and are easily trapped in a suboptimal state. In addition, some other methods aim to approximately optimize the diversity metric, such as $\alpha$-NDCG, but the results still remain suboptimal. To address these challenges, we introduce Multi-Agent reinforcement learning (MARL) for search result DIVersity, which called MA4DIV. In this approach, each document is an agent and the search result diversification is modeled as a cooperative task among multiple agents. This approach allows for directly optimizing the diversity metrics, such as $\alpha$-NDCG, while achieving high training efficiency. We conducted preliminary experiments on public TREC datasets to demonstrate the effectiveness and potential of MA4DIV. Considering the limited number of queries in public TREC datasets, we construct a large-scale dataset from industry sources and show that MA4DIV achieves substantial improvements in both effectiveness and efficiency than existing baselines on a industrial scale dataset.
- Abstract(参考訳): 検索結果の多様化(SRD)の目的は、選択した文書が可能な限り多くのサブトピックをカバーすることである。
既存の手法は主に「欲求選択(greedy selection)」というパラダイムを用いており、すなわち、一度に最も多様性の高い文書を選択する。
これらのアプローチは非効率であり、最適以下の状態に容易に閉じ込められる傾向にある。
さらに、例えば$\alpha$-NDCGのように、多様性の計量を概ね最適化することを目的としている方法もあるが、結果は依然として準最適である。
これらの課題に対処するために,MARL (Multi-Agent reinforcement learning) を導入した。
このアプローチでは、各文書はエージェントであり、検索結果の多様化は複数のエージェント間の協調的なタスクとしてモデル化される。
このアプローチにより、$\alpha$-NDCGなどの多様性メトリクスを直接最適化し、高いトレーニング効率を達成することができる。
公開TRECデータセットの予備実験を行い,MA4DIVの有効性と可能性を実証した。
パブリックTRECデータセットのクエリ数が限られていることを考慮し、業界ソースから大規模なデータセットを構築し、MA4DIVが既存の産業規模データセットのベースラインよりも有効性と効率の両方を著しく向上させることを示す。
関連論文リスト
- REAL-MM-RAG: A Real-World Multi-Modal Retrieval Benchmark [16.55516587540082]
本稿では,リアルタイム検索に不可欠な4つの重要な特性に対処する自動生成ベンチマークREAL-MM-RAGを紹介する。
本稿では,キーワードマッチング以外のモデルのセマンティック理解を評価するために,クエリリフレッシングに基づく多言語レベルのスキームを提案する。
我々のベンチマークでは、特にテーブル重ドキュメントの扱いや、クエリ・リフレージングに対する堅牢性において、重要なモデルの弱点が明らかになっている。
論文 参考訳(メタデータ) (2025-02-17T22:10:47Z) - MAmmoTH-VL: Eliciting Multimodal Reasoning with Instruction Tuning at Scale [66.73529246309033]
MLLM(Multimodal large language model)は、多モーダルタスクにおいて大きな可能性を秘めている。
既存の命令チューニングデータセットは、中間的合理性のないフレーズレベルの答えのみを提供する。
そこで本研究では,大規模マルチモーダル・インストラクション・チューニング・データセットを構築するためのスケーラブルで費用対効果の高い手法を提案する。
論文 参考訳(メタデータ) (2024-12-06T18:14:24Z) - Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
本稿では,データセット間のデータ品質向上を自動化する新しいStar-Agentsフレームワークを提案する。
このフレームワークは最初,複数のLDMエージェントを用いた多様なインストラクションデータを生成する。
生成したデータは、難易度と品質の両方を評価する二重モデル法を用いて厳密な評価を行う。
論文 参考訳(メタデータ) (2024-11-21T02:30:53Z) - Awaker2.5-VL: Stably Scaling MLLMs with Parameter-Efficient Mixture of Experts [21.066098443321966]
MLLM(Multimodal Large Language Models)に適したMixture of Experts(MoE)アーキテクチャであるAwaker2.5-VLを提案する。
Awaker2.5-VLのトレーニングと推論を高速化するために、我々のモデルの各専門家はローランク適応(LoRA)構造として考案される。
複数の最新のベンチマークの実験では、Awaker2.5-VLの有効性が示されている。
論文 参考訳(メタデータ) (2024-11-16T02:10:14Z) - Learning to Rank for Multiple Retrieval-Augmented Models through Iterative Utility Maximization [21.115495457454365]
本稿では,複数検索拡張世代(RAG)エージェントを対象とした統合検索エンジンの設計について検討する。
本稿では,これらのRAGエージェントの検索結果を検索エンジンが生成し,オフラインで検索した文書の品質に関するフィードバックを収集する反復的手法を提案する。
我々は、このアプローチをオンライン環境に適応させ、リアルタイムな個別エージェントのフィードバックに基づいて、検索エンジンがその振る舞いを洗練できるようにする。
論文 参考訳(メタデータ) (2024-10-13T17:53:50Z) - Retrieval with Learned Similarities [2.729516456192901]
最先端の検索アルゴリズムは、学習された類似点に移行した。
そこで本研究では,Mixture-of-Logits (MoL) を実証的に実現し,多様な検索シナリオにおいて優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2024-07-22T08:19:34Z) - AvaTaR: Optimizing LLM Agents for Tool Usage via Contrastive Reasoning [93.96463520716759]
大規模言語モデル(LLM)エージェントは、精度と幻覚を高めるために外部ツールと知識を活用する際、印象的な能力を示した。
本稿では、LLMエージェントを最適化して提供されたツールを効果的に活用し、与えられたタスクのパフォーマンスを向上させる新しい自動化フレームワークであるAvaTaRを紹介する。
論文 参考訳(メタデータ) (2024-06-17T04:20:02Z) - Multimodal Learned Sparse Retrieval with Probabilistic Expansion Control [66.78146440275093]
学習検索(LSR)は、クエリとドキュメントを疎語彙ベクトルにエンコードするニューラルネットワークのファミリーである。
テキスト画像検索に焦点をあて,マルチモーダル領域へのLSRの適用について検討する。
LexLIPやSTAIRのような現在のアプローチでは、大規模なデータセットで複雑なマルチステップのトレーニングが必要です。
提案手法は, 密度ベクトルを凍結密度モデルからスパース語彙ベクトルへ効率的に変換する。
論文 参考訳(メタデータ) (2024-02-27T14:21:56Z) - Diffusion Model is an Effective Planner and Data Synthesizer for
Multi-Task Reinforcement Learning [101.66860222415512]
Multi-Task Diffusion Model (textscMTDiff) は、トランスフォーマーのバックボーンを組み込んだ拡散に基づく手法であり、生成計画とデータ合成のための素早い学習を行う。
生成計画において、textscMTDiffはMeta-World上の50のタスクとMaze2D上の8のマップで最先端のアルゴリズムより優れています。
論文 参考訳(メタデータ) (2023-05-29T05:20:38Z) - IM-IAD: Industrial Image Anomaly Detection Benchmark in Manufacturing [88.35145788575348]
画像異常検出(英: Image Anomaly Detection、IAD)は、産業用コンピュータビジョンの課題である。
統一IMベンチマークの欠如は、現実世界のアプリケーションにおけるIADメソッドの開発と利用を妨げる。
7つの主要なデータセットに19のアルゴリズムを含む包括的画像異常検出ベンチマーク(IM-IAD)を構築した。
論文 参考訳(メタデータ) (2023-01-31T01:24:45Z) - Improving Multimodal Fusion with Hierarchical Mutual Information
Maximization for Multimodal Sentiment Analysis [16.32509144501822]
本稿では,MultiModal InfoMax (MMIM) というフレームワークを提案する。
このフレームワークは、下流のMSAタスクのパフォーマンスを改善するために、メインタスク(MSA)と共同で訓練されている。
論文 参考訳(メタデータ) (2021-09-01T14:45:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。