論文の概要: MA4DIV: Multi-Agent Reinforcement Learning for Search Result Diversification
- arxiv url: http://arxiv.org/abs/2403.17421v1
- Date: Tue, 26 Mar 2024 06:34:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 16:26:20.324297
- Title: MA4DIV: Multi-Agent Reinforcement Learning for Search Result Diversification
- Title(参考訳): MA4DIV:検索結果の多様化のためのマルチエージェント強化学習
- Authors: Yiqun Chen, Jiaxin Mao, Yi Zhang, Dehong MA, Long Xia, Jun Fan, Daiting Shi, Zhicong Cheng, Dawei Yin,
- Abstract要約: 我々は,MARL(Multi-Agent reinforcement learning)を検索結果のDIVersity(MA4DIV)に導入する。
このアプローチでは、各文書はエージェントであり、検索結果の多様化は複数のエージェント間の協調的なタスクとしてモデル化される。
我々は,MA4DIVが産業規模データセット上の既存のベースラインよりも有効性と効率の両面で大幅に向上していることを示す。
- 参考スコア(独自算出の注目度): 31.486100197084465
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The objective of search result diversification (SRD) is to ensure that selected documents cover as many different subtopics as possible. Existing methods primarily utilize a paradigm of "greedy selection", i.e., selecting one document with the highest diversity score at a time. These approaches tend to be inefficient and are easily trapped in a suboptimal state. In addition, some other methods aim to approximately optimize the diversity metric, such as $\alpha$-NDCG, but the results still remain suboptimal. To address these challenges, we introduce Multi-Agent reinforcement learning (MARL) for search result DIVersity, which called MA4DIV. In this approach, each document is an agent and the search result diversification is modeled as a cooperative task among multiple agents. This approach allows for directly optimizing the diversity metrics, such as $\alpha$-NDCG, while achieving high training efficiency. We conducted preliminary experiments on public TREC datasets to demonstrate the effectiveness and potential of MA4DIV. Considering the limited number of queries in public TREC datasets, we construct a large-scale dataset from industry sources and show that MA4DIV achieves substantial improvements in both effectiveness and efficiency than existing baselines on a industrial scale dataset.
- Abstract(参考訳): 検索結果の多様化(SRD)の目的は、選択した文書が可能な限り多くのサブトピックをカバーすることである。
既存の手法は主に「欲求選択(greedy selection)」というパラダイムを用いており、すなわち、一度に最も多様性の高い文書を選択する。
これらのアプローチは非効率であり、最適以下の状態に容易に閉じ込められる傾向にある。
さらに、例えば$\alpha$-NDCGのように、多様性の計量を概ね最適化することを目的としている方法もあるが、結果は依然として準最適である。
これらの課題に対処するために,MARL (Multi-Agent reinforcement learning) を導入した。
このアプローチでは、各文書はエージェントであり、検索結果の多様化は複数のエージェント間の協調的なタスクとしてモデル化される。
このアプローチにより、$\alpha$-NDCGなどの多様性メトリクスを直接最適化し、高いトレーニング効率を達成することができる。
公開TRECデータセットの予備実験を行い,MA4DIVの有効性と可能性を実証した。
パブリックTRECデータセットのクエリ数が限られていることを考慮し、業界ソースから大規模なデータセットを構築し、MA4DIVが既存の産業規模データセットのベースラインよりも有効性と効率の両方を著しく向上させることを示す。
関連論文リスト
- Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
本稿では,データセット間のデータ品質向上を自動化する新しいStar-Agentsフレームワークを提案する。
このフレームワークは最初,複数のLDMエージェントを用いた多様なインストラクションデータを生成する。
生成したデータは、難易度と品質の両方を評価する二重モデル法を用いて厳密な評価を行う。
論文 参考訳(メタデータ) (2024-11-21T02:30:53Z) - Learning to Rank for Multiple Retrieval-Augmented Models through Iterative Utility Maximization [21.115495457454365]
本稿では,複数検索拡張世代(RAG)エージェントを対象とした統合検索エンジンの設計について検討する。
本稿では,これらのRAGエージェントの検索結果を検索エンジンが生成し,オフラインで検索した文書の品質に関するフィードバックを収集する反復的手法を提案する。
我々は、このアプローチをオンライン環境に適応させ、リアルタイムな個別エージェントのフィードバックに基づいて、検索エンジンがその振る舞いを洗練できるようにする。
論文 参考訳(メタデータ) (2024-10-13T17:53:50Z) - Multi-Agent Collaborative Data Selection for Efficient LLM Pretraining [40.21546440726592]
本稿では,大規模言語モデル(LLM)事前学習のための新しいマルチエージェント協調データ選択機構を提案する。
このフレームワークでは、各データ選択メソッドが独立したエージェントとして機能し、エージェントコンソールは、すべてのエージェントからの情報を動的に統合するように設計されている。
論文 参考訳(メタデータ) (2024-10-10T16:45:28Z) - PEDAL: Enhancing Greedy Decoding with Large Language Models using Diverse Exemplars [1.450405446885067]
多様な推論経路を持つ自己認識技術は、大言語モデル(LLM)を用いたテキスト生成において顕著な性能向上を示した。
PEDALは,多種多様な模範的プロンプトの強みとLLMに基づくアグリゲーションを組み合わせて,総合的な性能向上を実現するハイブリッドな自己組織化手法である。
論文 参考訳(メタデータ) (2024-08-16T17:54:09Z) - Curriculum Learning with Quality-Driven Data Selection [6.045582958441303]
OpenAIのGPT-4は、MLLM(Multimodal Large Language Models)の開発に多大な関心を集めている。
画像とテキストの相関とモデルパープレクシリティを利用して、様々な品質のデータを評価し、選択する新しいデータ選択手法を提案する。
本研究は,各種データセットを対象とした総合的な実験を含む。
論文 参考訳(メタデータ) (2024-06-27T07:20:36Z) - AvaTaR: Optimizing LLM Agents for Tool Usage via Contrastive Reasoning [93.96463520716759]
大規模言語モデル(LLM)エージェントは、精度と幻覚を高めるために外部ツールと知識を活用する際、印象的な能力を示した。
本稿では、LLMエージェントを最適化して提供されたツールを効果的に活用し、与えられたタスクのパフォーマンスを向上させる新しい自動化フレームワークであるAvaTaRを紹介する。
論文 参考訳(メタデータ) (2024-06-17T04:20:02Z) - Self-Evolved Diverse Data Sampling for Efficient Instruction Tuning [47.02160072880698]
モデル自体が等しくあるいはそれ以上に効果的であるサブセットを積極的にサンプリングできる自己進化メカニズムを導入します。
データサンプリング技術の鍵は、選択したサブセットの多様性の向上にあります。
3つのデータセットとベンチマークにわたる大規模な実験は、DiverseEvolの有効性を示している。
論文 参考訳(メタデータ) (2023-11-14T14:10:40Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
本稿では,視覚的インストラクションチューニングのための画像と対話を同期的に合成する新しいデータ収集手法を提案する。
このアプローチは生成モデルのパワーを活用し、ChatGPTとテキスト・ツー・イメージ生成モデルの能力とを結合する。
本研究は,各種データセットを対象とした総合的な実験を含む。
論文 参考訳(メタデータ) (2023-08-20T12:43:52Z) - Diffusion Model is an Effective Planner and Data Synthesizer for
Multi-Task Reinforcement Learning [101.66860222415512]
Multi-Task Diffusion Model (textscMTDiff) は、トランスフォーマーのバックボーンを組み込んだ拡散に基づく手法であり、生成計画とデータ合成のための素早い学習を行う。
生成計画において、textscMTDiffはMeta-World上の50のタスクとMaze2D上の8のマップで最先端のアルゴリズムより優れています。
論文 参考訳(メタデータ) (2023-05-29T05:20:38Z) - Learning Better with Less: Effective Augmentation for Sample-Efficient
Visual Reinforcement Learning [57.83232242068982]
データ拡張(DA)は、ビジュアル強化学習(RL)アルゴリズムのサンプル効率を高める重要な手法である。
サンプル効率のよい視覚的RLを実現する上で, DAのどの属性が有効かは明らかになっていない。
本研究は,DAの属性が有効性に与える影響を評価するための総合的な実験を行う。
論文 参考訳(メタデータ) (2023-05-25T15:46:20Z) - Hierarchical Dynamic Filtering Network for RGB-D Salient Object
Detection [91.43066633305662]
RGB-D Salient Object Detection (SOD) の主な目的は、相互融合情報をよりよく統合し活用する方法である。
本稿では,これらの問題を新たな視点から考察する。
我々は、より柔軟で効率的なマルチスケールのクロスモーダルな特徴処理を実装している。
論文 参考訳(メタデータ) (2020-07-13T07:59:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。