Noise2Noise Denoising of CRISM Hyperspectral Data
- URL: http://arxiv.org/abs/2403.17757v1
- Date: Tue, 26 Mar 2024 14:49:22 GMT
- Title: Noise2Noise Denoising of CRISM Hyperspectral Data
- Authors: Robert Platt, Rossella Arcucci, Cédric John,
- Abstract summary: Noise2Noise4Mars (N2N4M) is introduced to remove noise from CRISM images.
Our model is self-supervised and does not require zero-noise target data.
This allows for detailed analysis for critical sites of interest on the Martian surface, including proposed lander sites.
- Score: 6.502987568800912
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hyperspectral data acquired by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) have allowed for unparalleled mapping of the surface mineralogy of Mars. Due to sensor degradation over time, a significant portion of the recently acquired data is considered unusable. Here a new data-driven model architecture, Noise2Noise4Mars (N2N4M), is introduced to remove noise from CRISM images. Our model is self-supervised and does not require zero-noise target data, making it well suited for use in Planetary Science applications where high quality labelled data is scarce. We demonstrate its strong performance on synthetic-noise data and CRISM images, and its impact on downstream classification performance, outperforming benchmark methods on most metrics. This allows for detailed analysis for critical sites of interest on the Martian surface, including proposed lander sites.
Related papers
- A Real Benchmark Swell Noise Dataset for Performing Seismic Data Denoising via Deep Learning [34.163242023030016]
This article presents a benchmark dataset composed of synthetic seismic data corrupted with noise extracted from a filtering process implemented on real data.
It is proposed as a benchmark for accelerating the development of new solutions for seismic data denoising.
The results show that DL models are effective at denoising seismic data, but some issues remain to be solved.
arXiv Detail & Related papers (2024-10-02T13:06:18Z) - NIR-Assisted Image Denoising: A Selective Fusion Approach and A Real-World Benchmark Dataset [53.79524776100983]
Leveraging near-infrared (NIR) images to assist visible RGB image denoising shows the potential to address this issue.
Existing works still struggle with taking advantage of NIR information effectively for real-world image denoising.
We propose an efficient Selective Fusion Module (SFM), which can be plug-and-played into the advanced denoising networks.
arXiv Detail & Related papers (2024-04-12T14:54:26Z) - Diffusion Models for Interferometric Satellite Aperture Radar [73.01013149014865]
Probabilistic Diffusion Models (PDMs) have recently emerged as a very promising class of generative models.
Here, we leverage PDMs to generate several radar-based satellite image datasets.
We show that PDMs succeed in generating images with complex and realistic structures, but that sampling time remains an issue.
arXiv Detail & Related papers (2023-08-31T16:26:17Z) - Denoising Simulated Low-Field MRI (70mT) using Denoising Autoencoders
(DAE) and Cycle-Consistent Generative Adversarial Networks (Cycle-GAN) [68.8204255655161]
Cycle Consistent Generative Adversarial Network (GAN) is implemented to yield high-field, high resolution, high signal-to-noise ratio (SNR) Magnetic Resonance Imaging (MRI) images.
Images were utilized to train a Denoising Autoencoder (DAE) and a Cycle-GAN, with paired and unpaired cases.
This work demonstrates the use of a generative deep learning model that can outperform classical DAEs to improve low-field MRI images and does not require image pairs.
arXiv Detail & Related papers (2023-07-12T00:01:00Z) - Realistic Noise Synthesis with Diffusion Models [68.48859665320828]
Deep image denoising models often rely on large amount of training data for the high quality performance.
We propose a novel method that synthesizes realistic noise using diffusion models, namely Realistic Noise Synthesize Diffusor (RNSD)
RNSD can incorporate guided multiscale content, such as more realistic noise with spatial correlations can be generated at multiple frequencies.
arXiv Detail & Related papers (2023-05-23T12:56:01Z) - S$^{5}$Mars: Semi-Supervised Learning for Mars Semantic Segmentation [18.92602724896845]
Mars semantic segmentation is an important Martian vision task, which is the base of rover autonomous planning and safe driving.
There is a lack of sufficient detailed and high-confidence data annotations, which are exactly required by most deep learning methods to obtain a good model.
We propose our solution from the perspective of joint data and method design.
Experimental results show that our method can outperform state-of-the-art SSL approaches remarkably.
arXiv Detail & Related papers (2022-07-04T05:03:10Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
The presence of speckle degrades the image quality and adversely affects the performance of SAR image understanding applications.
We introduce SAR-DDPM, a denoising diffusion probabilistic model for SAR despeckling.
The proposed method achieves significant improvements in both quantitative and qualitative results over the state-of-the-art despeckling methods.
arXiv Detail & Related papers (2022-06-09T14:00:26Z) - Automatic Feature Highlighting in Noisy RES Data With CycleGAN [0.0]
Radio echo sounding (RES) is a common technique used in subsurface glacial imaging, which provides insight into the underlying rock and ice.
Researchers most often use a combination of manual interpretation and filtering techniques to denoise data.
Fully Convolutional Networks have been proposed as an automated alternative to identify layer boundaries in radargrams.
Here, the authors propose a GAN based model to interpolate layer boundaries through noise and highlight layers in two-dimensional glacial RES data.
arXiv Detail & Related papers (2021-08-25T15:03:47Z) - CycleISP: Real Image Restoration via Improved Data Synthesis [166.17296369600774]
We present a framework that models camera imaging pipeline in forward and reverse directions.
By training a new image denoising network on realistic synthetic data, we achieve the state-of-the-art performance on real camera benchmark datasets.
arXiv Detail & Related papers (2020-03-17T15:20:25Z) - Self-Supervised Poisson-Gaussian Denoising [1.957338076370071]
We extend the blindspot model for self-supervised denoising to handle Poisson-Gaussian noise.
We introduce a new training strategy to handle Poisson-Gaussian noise which is the standard noise model for microscope images.
We show how our denoiser can be adapted to the test data to improve performance.
arXiv Detail & Related papers (2020-02-21T21:34:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.