論文の概要: Change Guiding Network: Incorporating Change Prior to Guide Change Detection in Remote Sensing Imagery
- arxiv url: http://arxiv.org/abs/2404.09179v1
- Date: Sun, 14 Apr 2024 08:09:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 15:07:53.721122
- Title: Change Guiding Network: Incorporating Change Prior to Guide Change Detection in Remote Sensing Imagery
- Title(参考訳): 変更誘導ネットワーク:リモートセンシング画像におけるガイド変更検出に先立って変更を組み込む
- Authors: Chengxi Han, Chen Wu, Haonan Guo, Meiqi Hu, Jiepan Li, Hongruixuan Chen,
- Abstract要約: 本研究では,変化特徴の表現問題に対処するためにCGNet(Change Guiding Network)を設計する。
CGNetは、マルチスケール機能融合を導くために、リッチなセマンティック情報を持つ変更マップを生成する。
Change Guide Module (CGM) と呼ばれる自己保持モジュールは、画素間の長距離依存を効果的に捉えることができる。
- 参考スコア(独自算出の注目度): 6.5026098921977145
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancement of automated artificial intelligence algorithms and remote sensing instruments has benefited change detection (CD) tasks. However, there is still a lot of space to study for precise detection, especially the edge integrity and internal holes phenomenon of change features. In order to solve these problems, we design the Change Guiding Network (CGNet), to tackle the insufficient expression problem of change features in the conventional U-Net structure adopted in previous methods, which causes inaccurate edge detection and internal holes. Change maps from deep features with rich semantic information are generated and used as prior information to guide multi-scale feature fusion, which can improve the expression ability of change features. Meanwhile, we propose a self-attention module named Change Guide Module (CGM), which can effectively capture the long-distance dependency among pixels and effectively overcome the problem of the insufficient receptive field of traditional convolutional neural networks. On four major CD datasets, we verify the usefulness and efficiency of the CGNet, and a large number of experiments and ablation studies demonstrate the effectiveness of CGNet. We're going to open-source our code at https://github.com/ChengxiHAN/CGNet-CD.
- Abstract(参考訳): 自動人工知能アルゴリズムとリモートセンシング機器の急速な進歩は、変化検出(CD)タスクの恩恵を受けている。
しかし、正確な検出、特に変化の特徴のエッジの完全性や内部のホール現象について研究する余地は、まだたくさんある。
これらの問題を解決するために,従来のU-Net構造における変化特徴の表現不足に対処するCGNet(Change Guiding Network)を設計した。
豊富な意味情報を持つ深い特徴から変化マップを生成し、事前情報として使用し、マルチスケールな特徴融合を導くことにより、変化特徴の表現能力を向上させることができる。
一方,CGM(Change Guide Module)と呼ばれる自己注意モジュールは,画素間の長距離依存性を効果的に捉え,従来の畳み込みニューラルネットワークの受容領域が不十分な問題を効果的に克服する。
4つの主要なCDデータセットにおいて,CGNetの有用性と有効性を検証し,CGNetの有効性を実証する実験とアブレーション研究を行った。
コードをhttps://github.com/ChengxiHAN/CGNet-CDでオープンソース化します。
関連論文リスト
- Enhancing Perception of Key Changes in Remote Sensing Image Change Captioning [49.24306593078429]
KCFI(Key Change Features and Instruction-tuned)によるリモートセンシング画像変換キャプションのための新しいフレームワークを提案する。
KCFIは、バイテンポラルリモートセンシング画像特徴を抽出するViTsエンコーダと、重要な変化領域を識別するキー特徴知覚器と、画素レベルの変化検出デコーダとを含む。
提案手法の有効性を検証するため,LEVIR-CCデータセット上のいくつかの最新の変更キャプション手法との比較を行った。
論文 参考訳(メタデータ) (2024-09-19T09:33:33Z) - Relating CNN-Transformer Fusion Network for Change Detection [23.025190360146635]
RCTNetは、空間的特徴と時間的特徴の両方を利用する早期融合バックボーンを導入した。
実験では、従来のRS画像CD法よりもRCTNetの方が明らかに優れていることを示した。
論文 参考訳(メタデータ) (2024-07-03T14:58:40Z) - ChangeBind: A Hybrid Change Encoder for Remote Sensing Change Detection [16.62779899494721]
変化検出(CD)は、異なる時刻スタンプで同じ地理的領域間の意味的変化を検出することを目的とした、リモートセンシング(RS)の基本課題である。
本稿では,バイテンポラルRS画像における意味変化をエンコードする,効果的なSiameseベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-26T17:47:14Z) - ELGC-Net: Efficient Local-Global Context Aggregation for Remote Sensing Change Detection [65.59969454655996]
本稿では,変化領域を正確に推定するために,リッチな文脈情報を利用する効率的な変化検出フレームワークELGC-Netを提案する。
提案するELGC-Netは、リモートセンシング変更検出ベンチマークにおいて、最先端の性能を新たに設定する。
また,ELGC-Net-LWも導入した。
論文 参考訳(メタデータ) (2024-03-26T17:46:25Z) - Cal-DETR: Calibrated Detection Transformer [67.75361289429013]
本稿では,Deformable-DETR,UP-DETR,DINOのキャリブレーション検出トランス(Cal-DETR)のメカニズムを提案する。
我々は、不確実性を利用してクラスロジットを変調する不確実性誘導ロジット変調機構を開発する。
その結果、Cal-DETRは、ドメイン内およびドメイン外の両方を校正する競合する列車時間法に対して有効であることがわかった。
論文 参考訳(メタデータ) (2023-11-06T22:13:10Z) - Global Context Aggregation Network for Lightweight Saliency Detection of
Surface Defects [70.48554424894728]
我々は,エンコーダ・デコーダ構造上の表面欠陥を簡易に検出するためのGCANet(Global Context Aggregation Network)を開発した。
まず、軽量バックボーンの上部層に新しいトランスフォーマーエンコーダを導入し、DSA(Depth-wise Self-Attention)モジュールを通じてグローバルなコンテキスト情報をキャプチャする。
3つの公開欠陥データセットの実験結果から,提案したネットワークは,他の17の最先端手法と比較して,精度と実行効率のトレードオフを良好に達成できることが示された。
論文 参考訳(メタデータ) (2023-09-22T06:19:11Z) - D-Unet: A Dual-encoder U-Net for Image Splicing Forgery Detection and
Localization [108.8592577019391]
画像スプライシング偽造検出は、画像指紋によって改ざんされた領域と非改ざんされた領域を区別するグローバルバイナリ分類タスクである。
画像スプライシングフォージェリ検出のためのデュアルエンコーダU-Net(D-Unet)という,固定されていないエンコーダと固定エンコーダを用いた新しいネットワークを提案する。
D-Unetと最先端技術の比較実験において、D-Unetは画像レベルおよび画素レベルの検出において他の手法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-03T10:54:02Z) - From W-Net to CDGAN: Bi-temporal Change Detection via Deep Learning
Techniques [43.58400031452662]
W-Netと呼ばれるエンドツーエンドのデュアルブランチアーキテクチャを提案し、各ブランチは2つのバイテンポラルイメージのうちの1つを入力として取り込む。
また、最近人気になったGAN(Generative Adversarial Network)を応用し、当社のW-Netがジェネレータとして機能している。
ネットワークをトレーニングし,今後の研究を促進するために,Google Earthから画像を収集して大規模なデータセットを構築する。
論文 参考訳(メタデータ) (2020-03-14T09:24:08Z) - DASNet: Dual attentive fully convolutional siamese networks for change
detection of high resolution satellite images [17.839181739760676]
研究の目的は、関心の変化情報を識別し、無関係な変更情報を干渉要因としてフィルタリングすることである。
近年、ディープラーニングの台頭により、変化検出のための新しいツールが提供され、目覚ましい結果が得られた。
我々は,高解像度画像における変化検出のための新しい手法,すなわち,二重注意型完全畳み込みシームズネットワーク(DASNet)を提案する。
論文 参考訳(メタデータ) (2020-03-07T16:57:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。