論文の概要: Is Watermarking LLM-Generated Code Robust?
- arxiv url: http://arxiv.org/abs/2403.17983v2
- Date: Fri, 28 Jun 2024 18:35:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-02 14:39:26.712217
- Title: Is Watermarking LLM-Generated Code Robust?
- Title(参考訳): 透かし LLM 生成コードロバストか?
- Authors: Tarun Suresh, Shubham Ugare, Gagandeep Singh, Sasa Misailovic,
- Abstract要約: 大規模言語モデルにより生成されたPythonコードに対する既存の透かし手法の堅牢性に関する最初の研究について述べる。
セマンティック保存変換により、これらの透かしをコードから取り除くことは容易であることを示す。
- 参考スコア(独自算出の注目度): 5.48277165801539
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present the first study of the robustness of existing watermarking techniques on Python code generated by large language models. Although existing works showed that watermarking can be robust for natural language, we show that it is easy to remove these watermarks on code by semantic-preserving transformations.
- Abstract(参考訳): 大規模言語モデルにより生成されたPythonコードに対する既存の透かし手法の堅牢性に関する最初の研究について述べる。
既存の研究は、透かしは自然言語に対して堅牢であることを示したが、意味保存変換によってこれらの透かしをコードから取り除くことは容易であることを示した。
関連論文リスト
- Revisiting the Robustness of Watermarking to Paraphrasing Attacks [10.68370011459729]
多くの最近の透かし技術は、後に検出できる出力に信号を埋め込むためにLMの出力確率を変更する。
ブラックボックス型透かしモデルから限られた世代にしかアクセスできないため,パラフレーズ攻撃による透かし検出の回避効果を大幅に向上させることができる。
論文 参考訳(メタデータ) (2024-11-08T02:22:30Z) - De-mark: Watermark Removal in Large Language Models [59.00698153097887]
我々は、n-gramベースの透かしを効果的に除去するために設計された高度なフレームワークであるDe-markを紹介する。
提案手法は,透かしの強度を評価するために,ランダム選択探索と呼ばれる新しいクエリ手法を利用する。
論文 参考訳(メタデータ) (2024-10-17T17:42:10Z) - Can Watermarks Survive Translation? On the Cross-lingual Consistency of Text Watermark for Large Language Models [48.409979469683975]
テキスト透かしにおける言語間整合性の概念を紹介する。
予備的な実証実験の結果、現在のテキスト透かし技術は、テキストが様々な言語に翻訳されるときに一貫性が欠如していることが判明した。
透かしを回避するための言語横断型透かし除去攻撃(CWRA)を提案する。
論文 参考訳(メタデータ) (2024-02-21T18:48:38Z) - On the Learnability of Watermarks for Language Models [80.97358663708592]
言語モデルが透かし付きテキストを生成するために直接学習できるかどうかを問う。
本稿では,教師モデルとして振舞う学生モデルを訓練する透かし蒸留法を提案する。
モデルは、高い検出性で透かし付きテキストを生成することができる。
論文 参考訳(メタデータ) (2023-12-07T17:41:44Z) - A Robust Semantics-based Watermark for Large Language Model against Paraphrasing [50.84892876636013]
大規模言語モデル(LLM)は、様々な自然言語処理において優れた能力を示している。
LLMは不適切にも違法にも使用できるという懸念がある。
本稿ではセマンティクスに基づく透かしフレームワークSemaMarkを提案する。
論文 参考訳(メタデータ) (2023-11-15T06:19:02Z) - Who Wrote this Code? Watermarking for Code Generation [53.24895162874416]
本稿では,機械生成テキストを検出するために,Entropy Thresholding (SWEET) を用いたSelective WatErmarkingを提案する。
実験の結果,SWEETはコード品質を著しく向上し,すべてのベースラインを上回ります。
論文 参考訳(メタデータ) (2023-05-24T11:49:52Z) - A Watermark for Large Language Models [84.95327142027183]
本稿では,プロプライエタリな言語モデルのための透かしフレームワークを提案する。
透かしはテキストの品質に無視できない影響で埋め込むことができる。
言語モデルAPIやパラメータにアクセスすることなく、効率的なオープンソースアルゴリズムを使って検出することができる。
論文 参考訳(メタデータ) (2023-01-24T18:52:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。