TAFormer: A Unified Target-Aware Transformer for Video and Motion Joint Prediction in Aerial Scenes
- URL: http://arxiv.org/abs/2403.18238v1
- Date: Wed, 27 Mar 2024 04:03:55 GMT
- Title: TAFormer: A Unified Target-Aware Transformer for Video and Motion Joint Prediction in Aerial Scenes
- Authors: Liangyu Xu, Wanxuan Lu, Hongfeng Yu, Yongqiang Mao, Hanbo Bi, Chenglong Liu, Xian Sun, Kun Fu,
- Abstract summary: We introduce a novel task called Target-Aware Aerial Video Prediction, aiming to simultaneously predict future scenes and motion states of the target.
We introduce Spatiotemporal Attention (STA), which decouples the learning of video dynamics into spatial static attention and temporal dynamic attention, effectively modeling the scene appearance and motion.
To alleviate the difficulty of distinguishing targets in blurry predictions, we introduce Target-Sensitive Gaussian Loss (TSGL), enhancing the model's sensitivity to both target's position and content.
- Score: 14.924741503611749
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As drone technology advances, using unmanned aerial vehicles for aerial surveys has become the dominant trend in modern low-altitude remote sensing. The surge in aerial video data necessitates accurate prediction for future scenarios and motion states of the interested target, particularly in applications like traffic management and disaster response. Existing video prediction methods focus solely on predicting future scenes (video frames), suffering from the neglect of explicitly modeling target's motion states, which is crucial for aerial video interpretation. To address this issue, we introduce a novel task called Target-Aware Aerial Video Prediction, aiming to simultaneously predict future scenes and motion states of the target. Further, we design a model specifically for this task, named TAFormer, which provides a unified modeling approach for both video and target motion states. Specifically, we introduce Spatiotemporal Attention (STA), which decouples the learning of video dynamics into spatial static attention and temporal dynamic attention, effectively modeling the scene appearance and motion. Additionally, we design an Information Sharing Mechanism (ISM), which elegantly unifies the modeling of video and target motion by facilitating information interaction through two sets of messenger tokens. Moreover, to alleviate the difficulty of distinguishing targets in blurry predictions, we introduce Target-Sensitive Gaussian Loss (TSGL), enhancing the model's sensitivity to both target's position and content. Extensive experiments on UAV123VP and VisDroneVP (derived from single-object tracking datasets) demonstrate the exceptional performance of TAFormer in target-aware video prediction, showcasing its adaptability to the additional requirements of aerial video interpretation for target awareness.
Related papers
- E-Motion: Future Motion Simulation via Event Sequence Diffusion [86.80533612211502]
Event-based sensors may potentially offer a unique opportunity to predict future motion with a level of detail and precision previously unachievable.
We propose to integrate the strong learning capacity of the video diffusion model with the rich motion information of an event camera as a motion simulation framework.
Our findings suggest a promising direction for future research in enhancing the interpretative power and predictive accuracy of computer vision systems.
arXiv Detail & Related papers (2024-10-11T09:19:23Z) - MADiff: Motion-Aware Mamba Diffusion Models for Hand Trajectory Prediction on Egocentric Videos [27.766405152248055]
Hand trajectory prediction plays a vital role in comprehending human motion patterns.
However, capturing high-level human intentions consistent with reasonable temporal causality is challenging when only egocentric videos are available.
We propose a novel hand trajectory prediction method dubbed MADiff, which forecasts future hand waypoints with diffusion models.
arXiv Detail & Related papers (2024-09-04T12:06:33Z) - ETTrack: Enhanced Temporal Motion Predictor for Multi-Object Tracking [4.250337979548885]
We propose a motion-based MOT approach with an enhanced temporal motion predictor, ETTrack.
Specifically, the motion predictor integrates a transformer model and a Temporal Convolutional Network (TCN) to capture short-term and long-term motion patterns.
We show ETTrack achieves a competitive performance compared with state-of-the-art trackers on DanceTrack and SportsMOT.
arXiv Detail & Related papers (2024-05-24T17:51:33Z) - TK-Planes: Tiered K-Planes with High Dimensional Feature Vectors for Dynamic UAV-based Scenes [58.180556221044235]
We present a new approach to bridge the domain gap between synthetic and real-world data for unmanned aerial vehicle (UAV)-based perception.
Our formulation is designed for dynamic scenes, consisting of small moving objects or human actions.
We evaluate its performance on challenging datasets, including Okutama Action and UG2.
arXiv Detail & Related papers (2024-05-04T21:55:33Z) - OFMPNet: Deep End-to-End Model for Occupancy and Flow Prediction in Urban Environment [0.0]
We introduce an end-to-end neural network methodology designed to predict the future behaviors of all dynamic objects in the environment.
We propose a novel time-weighted motion flow loss, whose application has shown a substantial decrease in end-point error.
arXiv Detail & Related papers (2024-04-02T19:37:58Z) - MotionTrack: Learning Motion Predictor for Multiple Object Tracking [68.68339102749358]
We introduce a novel motion-based tracker, MotionTrack, centered around a learnable motion predictor.
Our experimental results demonstrate that MotionTrack yields state-of-the-art performance on datasets such as Dancetrack and SportsMOT.
arXiv Detail & Related papers (2023-06-05T04:24:11Z) - Multi-Object Tracking with Deep Learning Ensemble for Unmanned Aerial
System Applications [0.0]
Multi-object tracking (MOT) is a crucial component of situational awareness in military defense applications.
We present a robust object tracking architecture aimed to accommodate for the noise in real-time situations.
We propose a kinematic prediction model, called Deep Extended Kalman Filter (DeepEKF), in which a sequence-to-sequence architecture is used to predict entity trajectories in latent space.
arXiv Detail & Related papers (2021-10-05T13:50:38Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPOD is a novel method for predicting body dynamics based on graph attentional networks.
To incorporate a real-world challenge, we learn an indicator representing whether an estimated body joint is visible/invisible at each frame.
Our evaluation shows that TRiPOD outperforms all prior work and state-of-the-art specifically designed for each of the trajectory and pose forecasting tasks.
arXiv Detail & Related papers (2021-04-08T20:01:00Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z) - AutoTrajectory: Label-free Trajectory Extraction and Prediction from
Videos using Dynamic Points [92.91569287889203]
We present a novel, label-free algorithm, AutoTrajectory, for trajectory extraction and prediction.
To better capture the moving objects in videos, we introduce dynamic points.
We aggregate dynamic points to instance points, which stand for moving objects such as pedestrians in videos.
arXiv Detail & Related papers (2020-07-11T08:43:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.