論文の概要: Boosting Conversational Question Answering with Fine-Grained Retrieval-Augmentation and Self-Check
- arxiv url: http://arxiv.org/abs/2403.18243v1
- Date: Wed, 27 Mar 2024 04:20:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 18:26:17.619874
- Title: Boosting Conversational Question Answering with Fine-Grained Retrieval-Augmentation and Self-Check
- Title(参考訳): 細粒度検索と自己チェックによる会話型質問応答の強化
- Authors: Linhao Ye, Zhikai Lei, Jianghao Yin, Qin Chen, Jie Zhou, Liang He,
- Abstract要約: 本稿では,対話型質問応答のための細粒度検索と自己チェックを組み込んだ対話レベルのRAG手法を提案する。
特に,本手法は,対話型質問精算器,きめ細かい検索器,自己チェックに基づく応答生成器の3つのコンポーネントから構成される。
- 参考スコア(独自算出の注目度): 25.63538452425097
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-Augmented Generation (RAG) aims to generate more reliable and accurate responses, by augmenting large language models (LLMs) with the external vast and dynamic knowledge. Most previous work focuses on using RAG for single-round question answering, while how to adapt RAG to the complex conversational setting wherein the question is interdependent on the preceding context is not well studied. In this paper, we propose a conversation-level RAG approach, which incorporates fine-grained retrieval augmentation and self-check for conversational question answering (CQA). In particular, our approach consists of three components, namely conversational question refiner, fine-grained retriever and self-check based response generator, which work collaboratively for question understanding and relevant information acquisition in conversational settings. Extensive experiments demonstrate the great advantages of our approach over the state-of-the-art baselines. Moreover, we also release a Chinese CQA dataset with new features including reformulated question, extracted keyword, retrieved paragraphs and their helpfulness, which facilitates further researches in RAG enhanced CQA.
- Abstract(参考訳): Retrieval-Augmented Generation (RAG) は、より大きな言語モデル(LLM)を外部の膨大な動的知識で拡張することにより、より信頼性が高く正確な応答を生成することを目的としている。
これまでのほとんどの研究は、単ラウンドの質問応答にRAGを使うことに重点を置いているが、RAGを複雑な会話環境に適応する方法は、質問が前の文脈に依存しているような複雑な会話環境にどのように適応するかは、十分に研究されていない。
本稿では,対話型質問応答(CQA)のための詳細な検索拡張と自己チェックを組み込んだ対話レベルのRAG手法を提案する。
特に,本手法は,対話型質問精算器,細粒度検索器,自己チェック型応答生成器の3つのコンポーネントから構成される。
大規模な実験は、最先端のベースラインに対する我々のアプローチの大きな利点を実証している。
さらに,改良質問,抽出キーワード,検索段落,有用性などの新機能を備えた中国語CQAデータセットも公開し,RAG強化CQAのさらなる研究を容易にする。
関連論文リスト
- CORAL: Benchmarking Multi-turn Conversational Retrieval-Augmentation Generation [68.81271028921647]
我々は,現実的なマルチターン対話環境におけるRAGシステム評価のためのベンチマークであるCORALを紹介する。
コラルにはウィキペディアから自動的に派生した多様な情報検索会話が含まれている。
対話型RAGの3つの中核的なタスク、すなわち、通過検索、応答生成、および引用ラベリングをサポートする。
論文 参考訳(メタデータ) (2024-10-30T15:06:32Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
本稿では,複雑なQAタスクに対する適応ノート拡張RAG(Adaptive Note-Enhanced RAG)と呼ばれる汎用RAGアプローチを提案する。
具体的には、Adaptive-Noteは、知識の成長に関する包括的な視点を導入し、ノート形式で新しい情報を反復的に収集する。
さらに,適切な知識探索を促進するために,適応的な音符ベースの停止探索戦略を用いて,「何を検索し,いつ停止するか」を判断する。
論文 参考訳(メタデータ) (2024-10-11T14:03:29Z) - Learning When to Retrieve, What to Rewrite, and How to Respond in Conversational QA [16.1357049130957]
シングルターンSELF-RAGフレームワークを構築し,会話設定のためのSELF-multi-RAGを提案する。
SELF-multi-RAGは、関連するパスの検索に関して、シングルターン変種よりも改善された機能を示す。
論文 参考訳(メタデータ) (2024-09-23T20:05:12Z) - PICK: Polished & Informed Candidate Scoring for Knowledge-Grounded
Dialogue Systems [59.1250765143521]
現在の知識接地対話システムは、生成された応答を人間に好まれる品質に合わせるのに失敗することが多い。
我々は,世代別再描画フレームワークであるPolseed & Informed Candidate Scoring (PICK)を提案する。
対話履歴に関連性を維持しつつ,より忠実な応答を生成するためのPICKの有効性を示す。
論文 参考訳(メタデータ) (2023-09-19T08:27:09Z) - Conversational QA Dataset Generation with Answer Revision [2.5838973036257458]
本稿では,一節から質問に値するフレーズを抽出し,過去の会話を考慮し,それに対応する質問を生成する新しい枠組みを提案する。
本フレームワークでは,抽出した回答を質問生成後に修正し,その回答が一致した質問に正確に一致するようにした。
論文 参考訳(メタデータ) (2022-09-23T04:05:38Z) - CONQRR: Conversational Query Rewriting for Retrieval with Reinforcement
Learning [16.470428531658232]
本研究では,会話型質問を独立した質問に書き換えるクエリ書き換えモデルCONQRRを提案する。
CONQRR は最近のオープンドメイン CQA データセットで最先端の結果が得られることを示す。
論文 参考訳(メタデータ) (2021-12-16T01:40:30Z) - Effective FAQ Retrieval and Question Matching With Unsupervised
Knowledge Injection [10.82418428209551]
質問に対して適切な回答を得るための文脈言語モデルを提案する。
また、ドメイン固有の単語間のトポロジ関連関係を教師なしの方法で活用することについても検討する。
提案手法のバリエーションを,公開可能な中国語FAQデータセット上で評価し,さらに大規模質問マッチングタスクに適用し,コンテキスト化する。
論文 参考訳(メタデータ) (2020-10-27T05:03:34Z) - Generation-Augmented Retrieval for Open-domain Question Answering [134.27768711201202]
GAR(Generation-Augmented Retrieval)は、オープンドメインの質問に答える機能である。
クエリーに対して多様なコンテキストを生成することは、結果の融合が常により良い検索精度をもたらすので有益であることを示す。
GARは、抽出読取装置を備えた場合、抽出QA設定の下で、自然質問およびトリビアQAデータセットの最先端性能を達成する。
論文 参考訳(メタデータ) (2020-09-17T23:08:01Z) - Open-Retrieval Conversational Question Answering [62.11228261293487]
オープン検索型対話型質問応答 (ORConvQA) の設定を導入する。
ORConvQAのエンド・ツー・エンドシステムを構築し,レトリバー,リランカ,およびすべてトランスフォーマーをベースとしたリーダを特徴とする。
論文 参考訳(メタデータ) (2020-05-22T19:39:50Z) - Multi-Stage Conversational Passage Retrieval: An Approach to Fusing Term
Importance Estimation and Neural Query Rewriting [56.268862325167575]
マルチステージアドホックIRシステムにクエリ再構成を組み込んだ会話経路検索(ConvPR)に取り組む。
本稿では,1項の重要度推定と2項のニューラルクエリ書き換えという2つの手法を提案する。
前者に対しては、周波数に基づく信号を用いて会話コンテキストから抽出した重要な用語を用いて会話クエリを拡張する。
後者では,会話クエリを,事前訓練されたシーケンス列列列モデルを用いて,自然な,スタンドアロンの,人間の理解可能なクエリに再構成する。
論文 参考訳(メタデータ) (2020-05-05T14:30:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。