An Experimentally Validated Feasible Quantum Protocol for Identity-Based Signature with Application to Secure Email Communication
- URL: http://arxiv.org/abs/2403.18247v1
- Date: Wed, 27 Mar 2024 04:32:41 GMT
- Title: An Experimentally Validated Feasible Quantum Protocol for Identity-Based Signature with Application to Secure Email Communication
- Authors: Tapaswini Mohanty, Vikas Srivastava, Sumit Kumar Debnath, Debasish Roy, Kouichi Sakurai, Sourav Mukhopadhyay,
- Abstract summary: In 1984, Shamir developed the first Identity-based signature (IBS) to simplify public key infrastructure.
IBS protocols rely on several theoretical assumption-based hard problems.
Quantum cryptography (QC) is one such approach.
- Score: 1.156080039774429
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Digital signatures are one of the simplest cryptographic building blocks that provide appealing security characteristics such as authenticity, unforgeability, and undeniability. In 1984, Shamir developed the first Identity-based signature (IBS) to simplify public key infrastructure and circumvent the need for certificates. It makes the process uncomplicated by enabling users to verify digital signatures using only the identifiers of signers, such as email, phone number, etc. Nearly all existing IBS protocols rely on several theoretical assumption-based hard problems. Unfortunately, these hard problems are unsafe and pose a hazard in the quantum realm. Thus, designing IBS algorithms that can withstand quantum attacks and ensure long-term security is an important direction for future research. Quantum cryptography (QC) is one such approach. In this paper, we propose an IBS based on QC. Our scheme's security is based on the laws of quantum mechanics. It thereby achieves long-term security and provides resistance against quantum attacks. We verify the proposed design's correctness and feasibility by simulating it in a prototype quantum device and the IBM Qiskit quantum simulator. The implementation code in qiskit with Jupyternotebook is provided in the Annexure. Moreover, we discuss the application of our design in secure email communication.
Related papers
- Quantum digital signature based on single-qubit without a trusted third-party [45.41082277680607]
We propose a brand new quantum digital signature protocol without a trusted third party only with qubit technology to further improve the security.
We prove that the protocol has information-theoretical unforgeability. Moreover, it satisfies other important secure properties, including asymmetry, undeniability, and expandability.
arXiv Detail & Related papers (2024-10-17T09:49:29Z) - Revocable Encryption, Programs, and More: The Case of Multi-Copy Security [48.53070281993869]
We show the feasibility of revocable primitives, such as revocable encryption and revocable programs.
This suggests that the stronger notion of multi-copy security is within reach in unclonable cryptography.
arXiv Detail & Related papers (2024-10-17T02:37:40Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the
Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.
We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - A Feasible Hybrid Quantum-Assisted Digital Signature for Arbitrary
Message Length [0.0]
We propose a new quantum-assisted digital signature protocol based on symmetric keys generated by QKD.
The protocol is described for a three-user scenario composed of one sender and two receivers.
arXiv Detail & Related papers (2023-03-01T19:00:02Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - One-Time Universal Hashing Quantum Digital Signatures without Perfect
Keys [24.240914319917053]
We show that imperfect quantum keys with limited information leakage can be used for digital signatures and authentication without compromising security.
This study significantly reduces the delay for data postprocessing and is compatible with any quantum key generation protocols.
arXiv Detail & Related papers (2023-01-03T14:54:27Z) - Quantum Proofs of Deletion for Learning with Errors [91.3755431537592]
We construct the first fully homomorphic encryption scheme with certified deletion.
Our main technical ingredient is an interactive protocol by which a quantum prover can convince a classical verifier that a sample from the Learning with Errors distribution in the form of a quantum state was deleted.
arXiv Detail & Related papers (2022-03-03T10:07:32Z) - Efficient Quantum Digital Signatures without Symmetrization Step [7.848038078036641]
Quantum digital signatures (QDS) exploit quantum laws to guarantee non-repudiation, unforgeability and transferability of messages.
Current QDS protocols face two major restrictions, including the requirement of the symmetrization step.
We present an efficient QDS protocol to overcome these issues by utilizing the classical post-processing operation called post-matching method.
arXiv Detail & Related papers (2021-04-08T01:54:50Z) - Anti-Forging Quantum Data: Cryptographic Verification of Quantum
Computational Power [1.9737117321211988]
Quantum cloud computing is emerging as a popular model for users to experience the power of quantum computing through the internet.
How can users be sure that the output strings sent by the server are really from a quantum hardware?
arXiv Detail & Related papers (2020-05-04T14:28:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.