論文の概要: Multi-Modal Contrastive Learning for Online Clinical Time-Series Applications
- arxiv url: http://arxiv.org/abs/2403.18316v1
- Date: Wed, 27 Mar 2024 07:38:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 17:57:01.743253
- Title: Multi-Modal Contrastive Learning for Online Clinical Time-Series Applications
- Title(参考訳): オンライン臨床時系列アプリケーションのためのマルチモーダルコントラスト学習
- Authors: Fabian Baldenweg, Manuel Burger, Gunnar Rätsch, Rita Kuznetsova,
- Abstract要約: ICUデータに自己指導型マルチモーダルコントラスト学習技術を適用し、特に臨床ノートと時系列を臨床関連オンライン予測タスクに適用する。
ソフトな近傍関数であるMulti-Modal Neborhood Contrastive Loss (MM-NCL)を導入した。
- 参考スコア(独自算出の注目度): 7.469366252945506
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electronic Health Record (EHR) datasets from Intensive Care Units (ICU) contain a diverse set of data modalities. While prior works have successfully leveraged multiple modalities in supervised settings, we apply advanced self-supervised multi-modal contrastive learning techniques to ICU data, specifically focusing on clinical notes and time-series for clinically relevant online prediction tasks. We introduce a loss function Multi-Modal Neighborhood Contrastive Loss (MM-NCL), a soft neighborhood function, and showcase the excellent linear probe and zero-shot performance of our approach.
- Abstract(参考訳): 集中医療ユニット(ICU)の電子健康記録(EHR)データセットには、さまざまなデータモダリティが含まれている。
先行研究は、教師付きセッティングにおける複数のモダリティの活用に成功しているが、ICUデータに高度な自己教師付きマルチモーダルコントラスト学習技術を適用し、特に臨床ノートやオンライン予測タスクの時系列に焦点をあてる。
ソフトな近傍関数であるMulti-Modal Neborhood Contrastive Loss (MM-NCL)を導入した。
関連論文リスト
- Longitudinal Ensemble Integration for sequential classification with multimodal data [2.4554016712597138]
逐次分類のためのLongitudinal Ensemble Integration(LEI)を開発した。
認知症早期発見のために, LEIの性能を評価し, 既存のアプローチと比較した。
LEIの設計により、認知症関連診断の効果的な予測のために、時間を通して一貫して重要な特徴を識別できるようになった。
論文 参考訳(メタデータ) (2024-11-08T21:31:48Z) - Global Contrastive Training for Multimodal Electronic Health Records with Language Supervision [1.6245786035158123]
本稿では,医療時系列と臨床ノートに着目した,新しいマルチモーダルコントラスト学習フレームワークを提案する。
このフレームワークは、時間的クロスアテンション変換器と動的埋め込みおよびトークン化スキームを統合し、マルチモーダルな特徴表現を学習する。
実世界のERHデータセットを用いて実験したところ, 術後合併症9例の発症予測において, 我々のフレームワークは最先端のアプローチよりも優れていた。
論文 参考訳(メタデータ) (2024-04-10T04:19:59Z) - Temporal Cross-Attention for Dynamic Embedding and Tokenization of Multimodal Electronic Health Records [1.6609516435725236]
マルチモーダルな臨床時系列を正確に表現するための動的埋め込み・トークン化フレームワークを提案する。
術後合併症9例の発症予測に基礎的アプローチを応用した。
論文 参考訳(メタデータ) (2024-03-06T19:46:44Z) - Multimodal Pretraining of Medical Time Series and Notes [45.89025874396911]
ディープラーニングモデルは、意味のあるパターンを抽出する際の約束を示すが、広範囲なラベル付きデータが必要である。
本稿では,臨床測定値とノートのアライメントに着目し,自己指導型事前学習を用いた新しいアプローチを提案する。
病院内での死亡予測や表現型化などの下流タスクでは、データのごく一部がラベル付けされた設定において、ベースラインよりも優れています。
論文 参考訳(メタデータ) (2023-12-11T21:53:40Z) - End-to-End Breast Cancer Radiotherapy Planning via LMMs with Consistency Embedding [47.360760580820966]
放射線腫瘍学の分野に適した包括的大規模マルチモーダルモデル(LMM)であるRO-LMMを提案する。
このモデルは臨床ワークフロー内の一連のタスクを効果的に管理し、臨床コンテキストの要約、放射線治療計画の提案、計画誘導されたターゲットボリュームセグメンテーションを含む。
クリーン入力処理の整合性を維持しつつ,LMMのノイズ入力に対する堅牢性を向上する,CEFTune(Consistency Embedding Fine-Tuning)技術を提案する。
論文 参考訳(メタデータ) (2023-11-27T14:49:06Z) - Sequential Multi-Dimensional Self-Supervised Learning for Clinical Time
Series [3.635056427544418]
本稿では,臨床時系列データを対象とした自己教師付き学習手法を提案する。
本手法は各レベルにおける損失関数の特定の形態に依存しない。
本手法を実世界の2つの臨床データセットで評価する。
論文 参考訳(メタデータ) (2023-07-20T14:49:58Z) - Time Associated Meta Learning for Clinical Prediction [78.99422473394029]
本稿では,時間関連メタラーニング(TAML)手法を提案する。
タスク分割後のスパーシリティ問題に対処するため、TAMLは時間情報共有戦略を採用し、正のサンプル数を増やす。
複数の臨床データセットに対するTAMLの有効性を示す。
論文 参考訳(メタデータ) (2023-03-05T03:54:54Z) - Federated Cycling (FedCy): Semi-supervised Federated Learning of
Surgical Phases [57.90226879210227]
FedCyは、FLと自己教師付き学習を組み合わせた半教師付き学習(FSSL)手法で、ラベル付きビデオとラベルなしビデオの両方の分散データセットを利用する。
外科的段階の自動認識作業において,最先端のFSSL法よりも顕著な性能向上を示した。
論文 参考訳(メタデータ) (2022-03-14T17:44:53Z) - HiRID-ICU-Benchmark -- A Comprehensive Machine Learning Benchmark on
High-resolution ICU Data [0.8418021941792283]
ICU関連タスクの幅広い範囲をカバーするベンチマークの提供を目指している。
HiRIDデータセットを用いて,臨床医とのコラボレーションによって開発された複数の臨床関連タスクを定義した。
我々は,このタイプのデータに対する深層学習アプローチのいくつかの制限を強調し,現在最先端のシーケンスモデリング手法を詳細に分析する。
論文 参考訳(メタデータ) (2021-11-16T15:06:42Z) - Cross-Modal Information Maximization for Medical Imaging: CMIM [62.28852442561818]
病院では、同じ情報を異なるモダリティの下で利用できるようにする特定の情報システムにデータがサイロ化される。
これは、テスト時に常に利用できないかもしれない同じ情報の複数のビューを列車で取得し、使用するためのユニークな機会を提供する。
テスト時にモダリティの低下に耐性を持つマルチモーダル入力の優れた表現を学習することで、利用可能なデータを最大限活用する革新的なフレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-20T20:05:35Z) - CoLES: Contrastive Learning for Event Sequences with Self-Supervision [63.3568071938238]
本研究では,実世界のユーザが生成する個別イベントシーケンスにおける自己教師型学習の課題に対処する。
従来,音声やコンピュータビジョンの領域で使われていたコントラスト学習に適応する新しい手法"CoLES"を提案する。
論文 参考訳(メタデータ) (2020-02-19T15:15:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。